首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   63篇
  2023年   9篇
  2022年   17篇
  2021年   38篇
  2020年   12篇
  2019年   13篇
  2018年   23篇
  2017年   22篇
  2016年   23篇
  2015年   28篇
  2014年   34篇
  2013年   51篇
  2012年   59篇
  2011年   48篇
  2010年   30篇
  2009年   31篇
  2008年   32篇
  2007年   41篇
  2006年   40篇
  2005年   29篇
  2004年   26篇
  2003年   26篇
  2002年   37篇
  2001年   14篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   4篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1977年   3篇
  1974年   3篇
  1971年   4篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1962年   1篇
  1947年   1篇
  1910年   1篇
排序方式: 共有772条查询结果,搜索用时 281 毫秒
71.
Schachter H  Boulianne G 《Fly》2011,5(1):18-24
N-glycans are post-translational modifications in which the sugar chain is covalently linked to protein by a GlcNAcβ1-N-asparagine linkage. Drosophila melanogaster and other invertebrates, but not vertebrates, synthesize large amounts of "paucimannose" N-glycans that contain only three or four mannose residues. The enzyme UDP-GlcNAc:α3-D-mannoside β1,2-N-acetylglucosaminyltransferase I (GnTI, encoded by the Mgat1 gene) controls the synthesis of paucimannose N-glycans. Either deletion or neuron-specific knockdown of Mgat1 in wild type flies results in pronounced defects in locomotion, structural defects in the adult central nervous system and a severely reduced lifespan. We have recently shown that neuronal expression of a wild-type Mgat1 transgene in Mgat1-null flies rescues the structural defects in the brain (fused β-lobes) and the shortened lifespan and, surprisingly, results in a dramatic 135% increase in mean lifespan relative to genetically identical controls that do not express the transgene. In this review, we discuss various approaches that can be used to determine the roles of paucimannose N-glycans in Drosophila longevity and in the adult CNS.  相似文献   
72.

Background

Neuromuscular (NM) synaptogenesis is a tightly regulated process. We previously showed that in flies, Drosophila Nedd4 (dNedd4/dNedd4S) is required for proper NM synaptogenesis by promoting endocytosis of commissureless from the muscle surface, a pre-requisite step for muscle innervation. DNedd4 is an E3 ubiquitin ligase comprised of a C2-WW(x3)-Hect domain architecture, which includes several splice isoforms, the most prominent ones are dNedd4-short (dNedd4S) and dNedd4-long (dNedd4Lo).

Methodology/Principal Findings

We show here that while dNedd4S is essential for NM synaptogenesis, the dNedd4Lo isoform inhibits this process and causes lethality. Our results reveal that unlike dNedd4S, dNedd4Lo cannot rescue the lethality of dNedd4 null (DNedd4T121FS) flies. Moreover, overexpression of UAS-dNedd4Lo specifically in wildtype muscles leads to NM synaptogenesis defects, impaired locomotion and larval lethality. These negative effects of dNedd4Lo are ameliorated by deletion of two regions (N-terminus and Middle region) unique to this isoform, and by inactivating the catalytic activity of dNedd4Lo, suggesting that these unique regions, as well as catalytic activity, are responsible for the inhibitory effects of dNedd4Lo on synaptogenesis. In accord with these findings, we demonstrate by sqRT-PCR an increase in dNedd4S expression relative to the expression of dNedd4Lo during embryonic stages when synaptogenesis takes place.

Conclusion/Significance

Our studies demonstrate that splice isoforms of the same dNedd4 gene can lead to opposite effects on NM synaptogenesis.  相似文献   
73.
74.
75.
The biosynthetic pathway of the red-pigmented antibiotic, prodigiosin, produced by Serratia sp. is known to involve separate pathways for the production of the monopyrrole, 2-methyl-3-n-amyl-pyrrole (MAP) and the bipyrrole, 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) which are then coupled in the final condensation step. We have previously reported the cloning, sequencing and heterologous expression of the pig cluster responsible for prodigiosin biosynthesis in two Serratia sp. In this article we report the creation of in-frame deletions or insertions in every biosynthetic gene in the cluster from Serratia sp. ATCC 39006. The biosynthetic intermediates accumulating in each mutant have been analysed by LC-MS, cross-feeding and genetic complementation studies. Based on these results we assign specific roles in the biosynthesis of MBC to the following Pig proteins: PigI, PigG, PigA, PigJ, PigH, PigM, PigF and PigN. We report a novel pathway for the biosynthesis of MAP, involving PigD, PigE and PigB. We also report a new chemical synthesis of MAP and one of its precursors, 3-acetyloctanal. Finally, we identify the condensing enzyme as PigC. We reassess the existing literature and discuss the significance of the results for the biosynthesis of undecylprodigiosin by the Red cluster in Streptomyces coelicolor A3(2).  相似文献   
76.
Elodea nuttallii (Planch). H. St John is an introduced aquatic macrophyte which was first observed in France in the early 1950s. The impact of two frequencies of harvesting on the biomass and regrowth strategy of this invasive species was evaluated by assessment of morphological traits monthly from February to October 2003. The effect of this management on the floristic biodiversity was also analysed. Harvesting caused a drastic reduction of biomass of E. nuttallii. Two harvests caused almost total disappearance of E. nuttallii. Furthermore, no significant difference was observed in the architecture of E. nuttallii between an unharvested site and harvested site. In one year, harvest did not allow the development of native aquatic plants.  相似文献   
77.
Characterisation of a novel amylosucrase from Deinococcus radiodurans   总被引:2,自引:0,他引:2  
The BLAST search for amylosucrases has yielded several gene sequences of putative amylosucrases, however, with various questionable annotations. The putative encoded proteins share 32-48% identity with Neisseria polysaccharea amylosucrase (AS) and contain several amino acid residues proposed to be involved in AS specificity. First, the B-domains of the putative proteins and AS are highly similar. In addition, they also reveal additional residues between putative beta-strand 7 and alpha-helix 7 which could correspond to the AS B'-domain, which turns the active site into a deep pocket. Finally, conserved Asp and Arg residues could form a salt bridge similar to that found in AS, which is responsible for the glucosyl unit transfer specificity. Among these found genes, locus NP_294657.1 (dras) identified in the Deinococcus radiodurans genome was initially annotated as an alpha-amylase encoding gene. The putative encoded protein (DRAS) shares 42% identity with N. polysaccharea AS. To investigate the activity of this protein, gene NP_294657.1 was cloned and expressed in Escherichia coli. When acting on sucrose, the pure recombinant enzyme was shown to catalyse insoluble amylose polymer synthesis accompanied by side-reactions (sucrose hydrolysis, sucrose isomer and soluble maltooligosaccharide formation). Kinetic analyses further showed that DRAS follows a non-Michaelian behaviour toward sucrose substrate and is activated by glycogen, as is AS. This demonstrates that gene NP_294657.1 encodes an amylosucrase.  相似文献   
78.
Amylosucrase is a transglycosidase which belongs to family 13 of the glycoside hydrolases and transglycosidases, and catalyses the formation of amylose from sucrose. Its potential use as an industrial tool for the synthesis or modification of polysaccharides is hampered by its low catalytic efficiency on sucrose alone, its low stability and the catalysis of side reactions resulting in sucrose isomer formation. Therefore, combinatorial engineering of the enzyme through random mutagenesis, gene shuffling and selective screening (directed evolution) was applied, in order to generate more efficient variants of the enzyme. This resulted in isolation of the most active amylosucrase (Asn387Asp) characterized to date, with a 60% increase in activity and a highly efficient polymerase (Glu227Gly) that produces a longer polymer than the wild-type enzyme. Furthermore, judged from the screening results, several variants are expected to be improved concerning activity and/or thermostability. Most of the amino acid substitutions observed in the totality of these improved variants are clustered around specific regions. The secondary sucrose-binding site and beta strand 7, connected to the important Asp393 residue, are found to be important for amylosucrase activity, whereas a specific loop in the B-domain is involved in amylosucrase specificity and stability.  相似文献   
79.
80.
CD28 and CTLA-4 are the major costimulatory receptors on naive T cells. But it is not clear why CD28 is monovalent whereas CTLA-4 is bivalent for their shared ligands CD80/86. We generated bivalent CD28 constructs by fusing the extracellular domains of CTLA-4 or CD80 with the intracellular domains of CD28. Bivalent or monovalent CD28 constructs were ligated with recombinant ligands with or without TCR coligation. Monovalent CD28 ligation did not induce responses unless the TCR was coligated. By contrast, bivalent CD28 ligation induced responses in the absence of TCR engagement. To extend these findings to primary cells, we used novel superagonistic and conventional CD28 Abs. Superagonistic Ab D665, but not conventional Ab E18, predominantly ligates CD28 bivalently at low CD28/Ab ratios and induces Ag-independent T cell proliferation. Monovalency of CD28 for its natural ligands is thus essential to provide costimulation without inducing responses in the absence of TCR engagement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号