首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1803篇
  免费   119篇
  1922篇
  2023年   8篇
  2022年   13篇
  2021年   36篇
  2020年   15篇
  2019年   42篇
  2018年   44篇
  2017年   27篇
  2016年   42篇
  2015年   80篇
  2014年   110篇
  2013年   129篇
  2012年   135篇
  2011年   150篇
  2010年   91篇
  2009年   87篇
  2008年   118篇
  2007年   113篇
  2006年   107篇
  2005年   108篇
  2004年   106篇
  2003年   79篇
  2002年   67篇
  2001年   13篇
  2000年   10篇
  1999年   14篇
  1998年   17篇
  1997年   12篇
  1996年   11篇
  1995年   16篇
  1994年   14篇
  1993年   9篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   11篇
  1983年   4篇
  1982年   8篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1972年   2篇
  1970年   2篇
排序方式: 共有1922条查询结果,搜索用时 15 毫秒
61.
Interleukin-6 (IL-6) is a helical cytokine exerting pleiotropic activities including the regulation of hematopoiesis, B cell activation and acute-phase reaction. The structure-function relationship of the molecule is the subject of intensive investigation using point and deletion mutants. Our objective was to analyse the role of the N-terminal 18-46 region in IL-6-mediated expression of junB protooncogene and fibrinogen production, reflecting the acute phase response, with synthetic overlapping peptides. mRNA expression of junB was monitored by competitive RT-PCR, while sandwich ELISA was used for the detection of fibrinogen in the supernatant of HepG2 human hepatoma cells. We found that even short synthetic octapeptides can be stimulatory (in the absence of IL-6) or inhibitory (in the presence of IL-6) in both assays. To establish the molecular mechanism by which synthetic peptides exert their biological effects electromobility shift assay was carried out using HepG2 nuclear extracts. Peptides inducing junB expression initiate gel shifts of STAT3/DNA complexes, which may indicate the involvement of this signal transduction pathway. Circular dicroism spectroscopy data suggest that 8-11-mer peptides representing different parts of the 18-46 region have a marked tendency to adopt ordered conformations in a water/trifluoroethanol (1:1 v/v) mixture. Competition studies with rhIL-6 and selected fluorophore-labelled peptides indicate the presence of more than one binding site on soluble IL-6 receptor. Considering the possible multiple etiologic role of IL-6 in the pathogenesis of various diseases, these peptides could be useful for dissection of IL-6 related biological effects.  相似文献   
62.
In the root-colonizing biocontrol strain CHA0 of Pseudomonas fluorescens, cell density-dependent synthesis of extracellular, plant-beneficial secondary metabolites and enzymes is positively regulated by the GacS/GacA two-component system. Mutational analysis of the GacS sensor kinase using improved single-copy vectors showed that inactivation of each of the three conserved phosphate acceptor sites caused an exoproduct null phenotype (GacS-), whereas deletion of the periplasmic loop domain had no significant effect on the expression of exoproduct genes. Strain CHA0 is known to synthesize a solvent-extractable extracellular signal that advances and enhances the expression of exoproduct genes during the transition from exponential to stationary growth phase when maximal exoproduct formation occurs. Mutational inactivation of either GacS or its cognate response regulator GacA abolished the strain's response to added signal. Deletion of the linker domain of the GacS sensor kinase caused signal-independent, strongly elevated expression of exoproduct genes at low cell densities. In contrast to the wild-type strain CHA0, the gacS linker mutant and a gacS null mutant were unable to protect tomato plants from crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici in a soil-less microcosm, indicating that, at least in this plant-pathogen system, there is no advantage in using a signal-independent biocontrol strain.  相似文献   
63.
The molecular mechanisms controlling inductive events leading to the specification and terminal differentiation of cardiomyocytes are still largely unknown. We have investigated the role of Cripto, an EGF-CFC factor, in the earliest stages of cardiomyogenesis. We find that both the timing of initiation and the duration of Cripto signaling are crucial for priming differentiation of embryonic stem (ES) cells into cardiomyocytes, indicating that Cripto acts early to determine the cardiac fate. Furthermore, we show that failure to activate Cripto signaling in this early window of time results in a direct conversion of ES cells into a neural fate. Moreover, the induction of Cripto activates the Smad2 pathway, and overexpression of activated forms of type I receptor ActRIB compensates for the lack of Cripto signaling in promoting cardiomyogenesis. Finally, we show that Nodal antagonists inhibit Cripto-regulated cardiomyocyte induction and differentiation in ES cells. All together our findings provide evidence for a novel role of the Nodal/Cripto/Alk4 pathway in this process.  相似文献   
64.
The level and characteristics of 3'-5'-cyclic nucleotide phosphodiesterase (PDE) activity in chick dorsal root ganglion (DRG) extracts of 5-day posthatching chicken (P5) and E10 and E18 embryos were studied. At all stages, PDE activity is stimulated by calcium and calmodulin. A 5-fold increase in basal cAMP and cGMP PDE activity is evident from E10 to E18, while from E18 to P5 basal PDE activity remains constant. Ion exchange chromatography elution profile indicates that PDE1 isoforms represent the bulk of the PDE activity present. Inhibition studies were performed in order to distinguish the activity due to PDE1A, B and C. Western blot analysis using anti-mammalian PDE1A, B and C specific antibodies was also performed. Densitometric analysis of the stained bands reveals that PDE1B and PDE1C display a prominent increase between day 10 and day 18 of development (eight- and 3.6 fold, respectively) while a more limited increase (1.6- and 1.5-fold) is observed between E18 and P5; on the other hand PDE1A shows continuously increasing levels throughout development. Immunohistochemical analysis was performed with isoform specific antibodies used for western blot analysis. PDE1A immunoreactivity is found in the cytoplasm and fibers of several neurons differing in size and distributed throughout the ganglion. PDE1B staining is evident on all neurons, however, fibers appear very faintly labelled. All neurons appear stained by PDE1C antibody, although the intensity of immunostaining is always heterogeneous in different neuronal populations: no staining was evident on fibers or in non-neural cells. The distinct spatial and temporal expression patterns of PDE1 isoforms may indicate their different physiological roles in developing and mature chick DRG.  相似文献   
65.
Two polymorphic sites, -107 and -100 with respect to the "cap" site of the human beta globin pseudogene, recently discovered in our laboratory, turned out to have an ethnically complementary distribution. The first site is polymorphic in Europeans, North Africans, Indians (Hindu), and Oriental Asians, and monomorphic in sub-Saharan Africans. Conversely, the second site is polymorphic in sub-Saharan African populations and monomorphic in the aforementioned populations. Here we report the gene frequencies of these two polymorphic sites in nine additional populations (Egyptians, Spaniards, Japanese, Chinese, Filipinos, Vietnamese, Africans from Togo and from Benin, and Pygmies), confirming their ethnospecificity and, through the analysis of these two markers in Oromo and Amhara of Ethiopia (two mixed populations), their usefulness in genetic admixture studies. Moreover, we studied another marker polymorphic in sub-Saharan African populations only, a TaqI restriction fragment length polymorphism located in the same region as the present markers, demonstrating the absence of linkage disequilibrium between it and the -100 site, so that we can exclude that the information they provide is redundant.  相似文献   
66.
67.
The mRNA-capping process starts with the conversion of a 5′-triphosphate end into a 5′-diphosphate by an RNA triphosphatase, followed by the addition of a guanosine monophosphate unit in a 5′-5′ phosphodiester bond by a guanylyltransferase. Methyltransferases are involved in the third step of the process, transferring a methyl group from S-adenosyl-l-methionine to N7-guanine (cap 0) and to the ribose 2′OH group (cap 1) of the first RNA nucleotide; capping is essential for mRNA stability and proper replication. In the genus Flavivirus, N7-methyltransferase and 2′O-methyltransferase activities have been recently associated with the N-terminal domain of the viral NS5 protein. In order to further characterize the series of enzymatic reactions that support capping, we analyzed the crystal structures of Wesselsbron virus methyltransferase in complex with the S-adenosyl-l-methionine cofactor, S-adenosyl-l-homocysteine (the product of the methylation reaction), Sinefungin (a molecular analogue of the enzyme cofactor), and three different cap analogues (GpppG, N7MeGpppG, and N7MeGpppA). The structural results, together with those on other flaviviral methyltransferases, show that the capped RNA analogues all bind to an RNA high-affinity binding site. However, lack of specific interactions between the enzyme and the first nucleotide of the RNA chain suggests the requirement of a minimal number of nucleotides following the cap to strengthen protein/RNA interaction. Our data also show that, following incubation with guanosine triphosphate, Wesselsbron virus methyltransferase displays a guanosine monophosphate molecule covalently bound to residue Lys28, hinting at possible implications for the transfer of a guanine group to ppRNA. The structures of the Wesselsbron virus methyltransferase complexes obtained are discussed in the context of a model for N7-methyltransferase and 2′O-methyltransferase activities.  相似文献   
68.
The molecular mechanisms controlling genome packaging by single-stranded RNA viruses are still largely unknown. It is necessary in most cases for the protein to adopt different conformations at different positions on the capsid lattice in order to form a viral capsid from multiple copies of a single protein. We showed previously that such quasi-equivalent conformers of RNA bacteriophage MS2 coat protein dimers (CP2) can be switched by sequence-specific interaction with a short RNA stem-loop (TR) that occurs only once in the wild-type phage genome. In principle, multiple switching events are required to generate the phage T = 3 capsid. We have therefore investigated the sequence dependency of this event using two RNA aptamer sequences selected to bind the phage coat protein and an analogous packaging signal from phage Qβ known to be discriminated against by MS2 coat protein both in vivo and in vitro. All three non-cognate stem-loops support T = 3 shell formation, but none shows the kinetic-trapping effect seen when TR is mixed with equimolar CP2. We show that this reflects the fact that they are poor ligands compared with TR, failing to saturate the coat protein under the assay conditions, ensuring that sufficient amounts of both types of dimer required for efficient assembly are present in these reactions. Increasing the non-cognate RNA concentration restores the kinetic trap, confirming this interpretation. We have also assessed the effects of extending the TR stem-loop at the 5′ or 3′ end with short genomic sequences. These longer RNAs all show evidence of the kinetic trap, reflecting the fact that they all contain the TR sequence and are more efficient at promoting capsid formation than TR. Mass spectrometry has shown that at least two pathways toward the T = 3 shell occur in TR-induced assembly reactions: one via formation of a 3-fold axis and another that creates an extended 5-fold complex. The longer genomic RNAs suppress the 5-fold pathway, presumably as a consequence of steric clashes between multiply bound RNAs. Reversing the orientation of the extension sequences with respect to the TR stem-loop produces RNAs that are poor assembly initiators. The data support the idea that RNA-induced protein conformer switching occurs throughout assembly of the T = 3 shell and show that both positional and sequence-specific effects outside the TR stem-loop can have significant impacts on the precise assembly pathway followed.  相似文献   
69.
The study presented here aimed at identifying a new class of compounds acting against Leishmania parasites, the causative agent of Leishmaniasis. For this purpose, the thioether derivatives of our in-house library have been evaluated in whole-cell screening assays in order to determine their in vitro activity against Leishmania protozoan. Among them, promising results have been achieved with compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine) (IC50?=?29.43?µM), which is able to impair the mechanism of the parasite defence against the reactive oxygen species by inhibiting the trypanothione reductase (TR) with high efficiency (Ki 0.25?±?0.18?µM). The X-ray structure of L. infantum TR in complex with RDS 777 disclosed the mechanism of action of this compound that binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding and avoiding its reduction.  相似文献   
70.
The human epidermal growth factor receptor 2/neuregulin (HER2/neu) receptor is overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis. It is a target for therapy; humanized monoclonal antibodies to HER2 have led to increased survival of patients with HER2/neu-positive breast cancer. As a first step in the design of an oncolytic herpes simplex virus able to selectively infect HER2/neu-positive cells, we constructed two recombinants, R-LM11 and R-LM11L, that carry a single-chain antibody (scFv) against HER2 inserted at residue 24 of gD. The inserts were 247 or 256 amino acids long, and the size of the gD ectodomain was almost doubled by the insertion. We report the following. R-LM11 and R-LM11L infected derivatives of receptor-negative J or CHO cells that expressed HER2/neu as the sole receptor. Entry was dependent on HER2/neu, since it was inhibited in a dose-dependent manner by monoclonal antibodies to HER2/neu and by a soluble form of the receptor. The scFv insertion in gD disrupted the ability of the virus to enter cells through HVEM but maintained the ability to enter through nectin1. This report provides proof of principle that gD can tolerate fusion to a heterologous protein almost as large as the gD ectodomain itself without loss of profusion activity. Because the number of scFv's to a variety of receptors is continually increasing, this report makes possible the specific targeting of herpes simplex virus to a large collection of cell surface molecules for both oncolytic activity and visualization of tumor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号