首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3213篇
  免费   270篇
  2023年   14篇
  2022年   31篇
  2021年   69篇
  2020年   39篇
  2019年   54篇
  2018年   59篇
  2017年   55篇
  2016年   87篇
  2015年   138篇
  2014年   145篇
  2013年   201篇
  2012年   217篇
  2011年   246篇
  2010年   143篇
  2009年   133篇
  2008年   188篇
  2007年   191篇
  2006年   185篇
  2005年   163篇
  2004年   157篇
  2003年   140篇
  2002年   150篇
  2001年   41篇
  2000年   32篇
  1999年   43篇
  1998年   42篇
  1997年   32篇
  1996年   31篇
  1995年   32篇
  1994年   37篇
  1993年   25篇
  1992年   28篇
  1991年   41篇
  1990年   31篇
  1989年   24篇
  1988年   20篇
  1987年   23篇
  1986年   16篇
  1985年   20篇
  1984年   17篇
  1983年   13篇
  1982年   18篇
  1981年   12篇
  1980年   8篇
  1979年   11篇
  1978年   5篇
  1977年   10篇
  1976年   7篇
  1973年   6篇
  1961年   4篇
排序方式: 共有3483条查询结果,搜索用时 15 毫秒
141.
142.
Purinergic Signalling - Genetic variants involved in adenosine metabolism and its receptors were associated with increased risk for psychiatric disorders, including anxiety, depression, and...  相似文献   
143.
144.
Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.  相似文献   
145.
146.
Corrinoids are essential cofactors of enzymes involved in the C1 metabolism of anaerobes. The active, super‐reduced [CoI] state of the corrinoid cofactor is highly sensitive to autoxidation. In O‐demethylases, the oxidation to inactive [CoII] is reversed by an ATP‐dependent electron transfer catalyzed by the activating enzyme (AE). The redox potential changes of the corrinoid cofactor, which occur during this reaction, were studied by potentiometric titration coupled to UV/visible spectroscopy. By applying europium(II)–diethylenetriaminepentaacetic acid (DTPA) as a reductant, we were able to determine the midpoint potential of the [CoII]/[CoI] couple of the protein‐bound corrinoid cofactor in the absence and presence of AE and/or ATP. The data revealed that the transfer of electrons from a physiological donor to the corrinoid as the electron‐accepting site is achieved by increasing the potential of the corrinoid cofactor from ?530 ± 15 mV to ?250 ± 10 mV (ESHE, pH 7.5). The first 50 to 100 mV of the shift of the redox potential seem to be caused by the interaction of nucleotide‐bound AE with the corrinoid protein or its cofactor. The remaining 150–200 mV had to be overcome by the chemical energy of ATP hydrolysis. The experiments revealed that Eu(II)–DTPA, which was already known as a powerful reducing agent, is a suitable electron donor for titration experiments of low‐potential redox centers. Furthermore, the results of this study will contribute to the understanding of thermodynamically unfavorable electron transfer processes driven by the power of ATP hydrolysis.  相似文献   
147.
Probiotics and Antimicrobial Proteins - Hylak® forte is a postbiotic that inhibits the growth of pathogenic bacteria by reducing intestinal pH. It is assumed the potential presence of...  相似文献   
148.
Shajani Z  Varani G 《Biopolymers》2007,86(5-6):348-359
RNA and DNA molecules experience motions on a wide range of time scales, ranging from rapid localized motions to much slower collective motions of entire helical domains. The many functions of RNA in biology very often require this molecule to change its conformation in response to biological signals in the form of small molecules, proteins or other nucleic acids, whereas local motions in DNA may facilitate protein recognition and allow enzymes acting on DNA to access functional groups on the bases that would otherwise be buried in Watson-Crick base pairs. Although these statements make a compelling case to study the sequence dependent dynamics in nucleic acids, there are few residue-specific studies of nucleic acid dynamics. Fortunately, NMR studies of dynamics of nucleic acids and nucleic acids-protein complexes are gaining increased attention. The aim of this review is to provide an update of the recent progress in studies of nucleic acid dynamics by NMR based on the application of solution relaxation techniques.  相似文献   
149.
Diseases of epidermal keratins and their linker proteins   总被引:3,自引:0,他引:3  
Epidermal keratins, a diverse group of structural proteins, form intermediate filament networks responsible for the structural integrity of keratinocytes. The networks extend from the nucleus of the epidermal cells to the plasma membrane where the keratins attach to linker proteins which are part of desmosomal and hemidesmosomal attachment complexes. The expression of specific keratin genes is regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Progress in molecular characterization of the epidermal keratins and their linker proteins has formed the basis to identify mutations which are associated with distinct cutaneous manifestations in patients with genodermatoses. The precise phenotype of each disease apparently reflects the spatial level of expression of the mutated genes, as well as the types and positions of the mutations and their consequences at mRNA and protein levels. Identification of specific mutations in keratinization disorders has provided the basis for improved diagnosis and subclassification with prognostic implications and has formed the platform for prenatal testing and preimplantation genetic diagnosis. Finally, precise knowledge of the mutations is a prerequisite for development of gene therapy approaches to counteract, and potentially cure, these often devastating and currently intractable diseases.  相似文献   
150.
Neurofibrillary lesions are characteristic for a group of human diseases, named tauopathies, which are characterized by prominent intracellular accumulations of abnormal filaments formed by the microtubule-associated protein Tau. The tauopathies are accompanied by abnormal changes in Tau protein, including pathological conformation, somatodendritic mislocalization, hyperphosphorylation, and aggregation, whose interdependence is not well understood. To address these issues we have created transgenic mouse lines in which different variants of full-length Tau are expressed in a regulatable fashion, allowing one to switch the expression on and off at defined time points. The Tau variants differ by small mutations in the hexapeptide motifs that control the ability of Tau to adopt a beta-structure conformation and hence to aggregate. The "pro-aggregation" mutant DeltaK280, derived from one of the mutations observed in frontotemporal dementias, aggregates avidly in vitro, whereas the "anti-aggregation" mutant DeltaK280/PP cannot aggregate because of two beta-breaking prolines. In the transgenic mice, the pro-aggregation Tau induces a pathological conformation and pre-tangle aggregation, even at low expression levels, the anti-aggregation mutant does not. This illustrates that abnormal aggregation is primarily controlled by the molecular structure of Tau in vitro and in the organism. Both variants of Tau become mislocalized and hyperphosphorylated independently of aggregation, suggesting that localization and phosphorylation are mainly a consequence of increased concentration. These pathological changes are reversible when the expression of Tau is switched off. The pro-aggregation Tau causes a strong reduction in spine synapses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号