首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3234篇
  免费   204篇
  国内免费   1篇
  2024年   5篇
  2023年   31篇
  2022年   56篇
  2021年   124篇
  2020年   78篇
  2019年   92篇
  2018年   106篇
  2017年   88篇
  2016年   120篇
  2015年   204篇
  2014年   197篇
  2013年   250篇
  2012年   281篇
  2011年   263篇
  2010年   168篇
  2009年   143篇
  2008年   160篇
  2007年   190篇
  2006年   171篇
  2005年   152篇
  2004年   148篇
  2003年   105篇
  2002年   95篇
  2001年   26篇
  2000年   19篇
  1999年   18篇
  1998年   28篇
  1997年   13篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   15篇
  1989年   9篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   8篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   2篇
  1959年   1篇
排序方式: 共有3439条查询结果,搜索用时 31 毫秒
131.
The cyanobacterial flora of maritime Antarctica appears to contain many endemic species and only few cosmopolitan or wider-distributed taxa. Several morphospecies that have been erroneously identified in the past following available keys from temperate or tropical zones belong in fact to little-known and poorly described Antarctic cyanobacteria. Here we describe the taxonomy of one such example, the colonial species Gloeocapsopsis aurea . This cyanobacterium produces irregular, packet-like colonies that form black mats, films and crusts. Based on analysis of algal samples from Punta Cierva (Antarctic Peninsula) and King George Island (South Shetland Islands), this taxon is widely distributed in coastal, deglaciated areas of the maritime Antarctic. It is an important, often dominating, ecotype, mostly colonising irrigated rocks but also found in a variety of other aquatic and semi-aquatic habitats under a wide range of conductivities, pH and nutrient regimes.  相似文献   
132.
Glaucoma is the second most frequent cause of irreversible blindness worldwide. Genetic factors have been implicated in the development of the disease. So far six loci (GLC1A-GLC1F) and two genes (TIGR/MYOC and OPTN) are involved in the development of juvenile (JOAG) and adult onset or chronic primary open angle glaucoma (COAG), while two loci (GLC3A,GLC3B) and one gene (CYP1B1) are known for primary congenital glaucoma (PCG). Here we summarize the results of the first genetic studies of glaucoma in Costa Rica. Nine families: 1 with JOAG, 1 with PCG and 7 with COAG were screened for mutations at the known genes. A 10 bp duplication, 1546-1555dupTCATGCCACC, at the CYP1B1 gene, causes, in homozygous state, glaucoma in the consanguineous PCG family. This mutation has been found in different countries and generates an early stop codon that termitates protein synthesis 140 amino acids earlier than the normal allele. In exon 1 of the T1GR/MYOC the innocuous Arg76Lys variant was found in two of the COAG families. In the OPTN gene two variants in the coding region (Thr34Thr, Met 98Lys) and 7 intronic changes were found in other Costa Rican glaucoma patients. One of the COAG families was chosen for a genome scan with 379 microsatellite markers and linkage analysis. LOD scores "suggestive" of linkage were obtained for several chromosomal regions. Evidence indicates that hereditary glaucoma in Costa Rica is highly heterogeneous and that further studies in the country will probably disclose some up to now unknown genes responsible for the disease.  相似文献   
133.
Mammalian circadian rhythms are entrained by light pulses that induce phosphorylation events in the suprachiasmatic nuclei (SCN). Ca2+-dependent enzymes are known to be involved in circadian phase shifting. In this paper, we show that calcium/calmodulin-dependent kinase II (CaMKII) is rhythmically phosphorylated in the SCN both under entrained and free-running (constant dark) conditions while neuronal nitric oxide synthase (nNOS) is rhythmically phosphorylated in the SCN only under entrained conditions. Both p-CaMKII and p-NOS (specifically phosphorylated by CaMKII) levels peak during the day or subjective day. Light pulses administered during the subjective night, but not during the day, induced rapid phosphorylation of both enzymes. Moreover, we found an inhibitory effect of KN-62 and KN-93, both CaMKII inhibitors, on light-induced nNOS activity and nNOS phosphorylation respectively, suggesting a direct pathway between both enzymes which is at least partially responsible of photic circadian entrainment.  相似文献   
134.
The derivation of insulin-producing cells from embryonic stem (ES) cells has been controversially described. Whereas several authors showed successful differentiation of mouse ES cells into islet-like clusters, others could not confirm the results. Here, we present a detailed comparison of the various strategies used to generate pancreatic cells with respect to protocols and differentiation factors and give an explanation of the contradictory findings. It is suggested that the selection or enrichment of ES-derived nestin-positive cells should be avoided, since these cells are already committed to a neural fate before pancreatic differentiation is induced.  相似文献   
135.
136.
The investigation of metabolism is an important milestone in the course of drug development. Drug metabolism is a determinant of drug pharmacokinetics variability in human beings. Fundamental to this are phenotypic differences, as well as genotypic differences, in the expression of the enzymes involved in drug metabolism. Genotypic variability is easy to identify by means of polymerase chain reaction-based or DNA chip-based methods, whereas phenotypic variability requires direct measurement of enzyme activities in liver, or, indirectly, measurement of the rate of metabolism of a given compound in vivo. There is a great deal of phenotypic variability in human beings, only a minor part being attributable to gene polymorphisms. Thus, enzyme activity measurements in a series of human livers, as well as in vivo studies with human volunteers, show that phenotypic variability is, by far, much greater than genotypic variability. In vitro models are currently used to investigate the hepatic metabolism of new compounds. Cultured human hepatocytes are considered to be the closest model to the human liver. However, the fact that hepatocytes are placed in a microenvironment that differs from that of the cells in the liver raises the question of to what extent drug metabolism variability observed in vitro actually reflects that in the liver in vivo. This issue has been examined by investigating the metabolism of the model compound, aceclofenac (an approved analgesic/anti-inflammatory drug), both in vitro and in vivo. Hepatocytes isolated from programmed liver biopsies were incubated with aceclofenac, and the metabolites formed were investigated by HPLC. The patients were given the drug during the course of clinical recovery, and the metabolites, largely present in urine, were analysed. In vitro and in vivo data from the same individual were compared. There was a good correlation between the in vitro and in vivo relative abundance of oxidised metabolites (4'-OH-aceclofenac + 4'-OH-diclofenac; Spearman's rho = 0.855), and the hydrolysis of aceclofenac (diclofenac + 4'-OH-aceclofenac + 4'-OH-diclofenac; rho = 0.691), while the conjugation of the drug in vitro was somewhat lower than in vivo. Globally, the metabolism of aceclofenac in vitro correlated with the amount of metabolites excreted in urine after 16 hours (rho = 0.95). Overall, although differing among assays, the in vitro/in vivo metabolism data for each patient were surprisingly similar. Thus, the variability observed in vitro appears to reflect genuine phenotypic variability among the donors.  相似文献   
137.
Ca2+ uptake and Ca2+ extrusion mechanisms were studied in enterocytes with different degree of differentiation from chicks adapted to a low Ca2+ diet as compared to animals fed a normal diet. Chicks adapted to a low Ca2+ diet presented hypocalcemia, hypophosphatemia and increased serum 1,25(OH)2D3 and Ca2+ absorption. Low Ca2+ diet increased the alkaline phosphatase (AP) activity, independently of the cellular maturation, but it did not alter gamma-glutamyl-transpeptidase activity. Ca2+ uptake, Ca2+-ATPase and Na(+)/Ca2+ exchanger activities and expressions were increased by the mineral-deficient diet either in mature or immature enterocytes. Western blots analysis shows that vitamin D receptor (VDR) expression was much higher in crypt cells than in mature cells. Low Ca2+ diet decreased the number of vitamin D receptor units in both kinds of cells. In conclusion, changes in Ca2+ uptake and Ca2+ extrusion mechanisms in the enterocytes by a low Ca2+ diet appear to be a result of enhanced serum levels of 1,25(OH)2D3, which would promote cellular differentiation producing cells more efficient to express vitamin D dependent genes required for Ca2+ absorption.  相似文献   
138.
139.
This review article presents kidney cancer epidemiology as well as main environmental and life style risk factors.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号