首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5085篇
  免费   430篇
  5515篇
  2023年   58篇
  2022年   95篇
  2021年   162篇
  2020年   100篇
  2019年   128篇
  2018年   140篇
  2017年   127篇
  2016年   212篇
  2015年   284篇
  2014年   300篇
  2013年   317篇
  2012年   421篇
  2011年   380篇
  2010年   270篇
  2009年   192篇
  2008年   289篇
  2007年   253篇
  2006年   248篇
  2005年   173篇
  2004年   173篇
  2003年   176篇
  2002年   137篇
  2001年   54篇
  2000年   28篇
  1999年   57篇
  1998年   41篇
  1997年   16篇
  1996年   34篇
  1995年   22篇
  1994年   25篇
  1993年   24篇
  1992年   32篇
  1991年   40篇
  1990年   19篇
  1989年   18篇
  1988年   18篇
  1987年   19篇
  1986年   15篇
  1985年   18篇
  1984年   28篇
  1983年   21篇
  1982年   18篇
  1981年   18篇
  1980年   18篇
  1978年   13篇
  1977年   19篇
  1976年   16篇
  1884年   13篇
  1882年   12篇
  1881年   12篇
排序方式: 共有5515条查询结果,搜索用时 15 毫秒
101.
Fusarium oxysporum is one of the most abundant and diverse fungal species found in soils and includes nonpathogenic, endophytic, and pathogenic strains affecting a broad range of plant and animal hosts. Conidiation is the major mode of reproduction in many filamentous fungi, but the regulation of this process is largely unknown. Lysine acetylation (Kac) is an evolutionarily conserved and widespread posttranslational modification implicated in regulation of multiple metabolic processes. A total of 62 upregulated and 49 downregulated Kac proteins were identified in sporulating mycelia versus nonsporulating mycelia of F. oxysporum. Diverse cellular proteins, including glycolytic enzymes, ribosomal proteins, and endoplasmic reticulum–resident molecular chaperones, were differentially acetylated in the sporulation process. Altered Kac levels of three endoplasmic reticulum–resident molecular chaperones, PDIK70, HSP70K604, and HSP40K32 were identified that with important roles in F. oxysporum conidiation. Specifically, K70 acetylation (K70ac) was found to be crucial for maintaining stability and activity of protein disulphide isomerase and the K604ac of HSP70 and K32ac of HSP40 suppressed the detoxification ability of these heat shock proteins, resulting in higher levels of protein aggregation. During conidial formation, an increased level of PDIK70ac and decreased levels of HSP70K604ac and HSP40K32ac contributed to the proper processing of unfolded proteins and eliminated protein aggregation, which is beneficial for dramatic cell biological remodeling during conidiation in F. oxysporum.  相似文献   
102.
103.
The Bcl-2 proteins Bax and Bak can permeabilize the outer mitochondrial membrane and commit cells to apoptosis. Pro-survival Bcl-2 proteins control Bax by constant retrotranslocation into the cytosol of healthy cells. The stabilization of cytosolic Bax raises the question whether the functionally redundant but largely mitochondrial Bak shares this level of regulation. Here we report that Bak is retrotranslocated from the mitochondria by pro-survival Bcl-2 proteins. Bak is present in the cytosol of human cells and tissues, but low shuttling rates cause predominant mitochondrial Bak localization. Interchanging the membrane anchors of Bax and Bak reverses their subcellular localization compared to the wild-type proteins. Strikingly, the reduction of Bax shuttling to the level of Bak retrotranslocation results in full Bax toxicity even in absence of apoptosis induction. Thus, fast Bax retrotranslocation is required to protect cells from commitment to programmed death.  相似文献   
104.
Previously, we reported that treatment of T cells with the 60-kDa heat shock protein (HSP60) inhibits chemotaxis. We now report that treatment of purified human T cells with recombinant human HSP60 or its biologically active peptide p277 up-regulates suppressor of cytokine signaling (SOCS)3 expression via TLR2 and STAT3 activation. SOCS3, in turn, inhibits the downstream effects of stromal cell-derived-1alpha (CXCL12)-CXCR4 interaction in: 1) phosphorylation of ERK1/2, Pyk2, AKT, and myosin L chain, required for cell adhesion and migration; 2) formation of rear-front T cell polarity; and 3) migration into the bone marrow of NOD/SCID mice. HSP60 also activates SOCS3 in mouse lymphocytes and inhibits their chemotaxis toward stromal cell-derived factor-1alpha and their ability to adoptively transfer delayed-type hypersensitivity. These effects of HSP60 could not be attributed to LPS or LPS-associated lipoprotein contamination. Thus, HSP60 can regulate T cell-mediated inflammation via specific signal transduction and SOCS3 activation.  相似文献   
105.
The net effect of increased wort osmolarity on fermentation time, bottom yeast vitality and sedimentation, beer flavor compounds, and haze was determined in fermentations with 12° all-malt wort supplemented with sorbitol to reach osmolarity equal to 16° and 20°. Three pitchings were performed in 12°/12°/12°, 16°/16°/12°, and 20°/20°/12° worts. Fermentations in 16° and 20° worts decreased yeast vitality measured as acidification power (AP) by a maximum of 10%, lowered yeast proliferation, and increased fermentation time. Repitching aggravated these effects. The 3rd “back to normal” pitching into 12° wort restored the yeast AP and reproductive abilities while the extended fermentation time remained. Yeast sedimentation in 16° and 20° worts was delayed but increased about two times at fermentation end relative to that in 12° wort. Third “back-to-normal” pitching abolished the delay in sedimentation and reduced its extent, which became nearly equal in all variants. Beer brewed at increased osmolarity was characterized by increased levels of diacetyl and pentanedione and lower levels of dimethylsulfide and acetaldehyde. Esters and higher alcohols displayed small variations irrespective of wort osmolarity or repitching. Increased wort osmolarity had no appreciable effect on the haze of green beer and accelerated beer clarification during maturation. In all variants, chill haze increased with repitching.  相似文献   
106.
Aim To test predictions of the vicariance model, to define basic biogeographical units for Cerrado squamates, and to discuss previous biogeographical hypotheses. Location Cerrado; South American savannas south of the Amazon, extending across central Brazil, with marginal areas in Bolivia and Paraguay and isolated relictual enclaves in adjacent regions. Methods We compiled species occurrence records via field sampling and revision of museum specimens and taxonomic literature. All species were mapped according to georeferenced locality records, and classified as (1) endemic or non‐endemic, (2) typical of plateaus or depressions, and (3) typical of open or forested habitats. We tested predictions of the vicariance model using biotic element analysis, searching for non‐random clusters of species ranges. Spatial congruence of biotic elements was compared with putative areas of endemism revealed by sympatric restricted‐range species. Effects of topographical and vegetational mosaics on distribution patterns were studied according to species composition in biotic elements and areas of endemism. Results We recorded 267 Cerrado squamates, of which 103 (39%) are endemics, including 20 amphisbaenians (61% endemism), 32 lizards (42%) and 51 snakes (32%). Distribution patterns corroborated predictions of the vicariance model, revealing groups of species with significantly clustered ranges. An analysis of endemic species recovered seven biotic elements, corroborating results including non‐endemics. Sympatric restricted‐range taxa delimited 10 putative areas of endemism, largely coincident with core areas of biotic elements detected with endemic taxa. Distribution patterns were associated with major topographical and vegetational divisions of the Cerrado. Endemism prevailed in open, elevated plateaus, whereas faunal interchange, mostly associated with forest habitats, was more common in peripheral depressions. Main conclusions Our results indicate that vicariant speciation has strongly shaped Cerrado squamate diversity, in contrast to earlier studies emphasizing faunal interchange and low endemism in the Cerrado vertebrate fauna. Levels of squamate endemism are higher than in any other Cerrado vertebrate group. The high number of recovered endemics revealed previously undetected areas of evolutionary relevance, indicating that biogeographical patterns in the Cerrado were poorly represented in previous analyses. Although still largely undocumented, effects of vicariant speciation may be prevalent in a large fraction of Cerrado and Neotropical biodiversity.  相似文献   
107.
The efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short‐term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long‐term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short‐term increases in temperature. Long‐term experimental evolution under high temperature reversed the short‐term stimulation of metabolic rates, resulting in increased rates of carbon fixation. Our findings suggest that thermal adaptation may therefore have an ameliorating impact on the efficiency of phytoplankton as primary mediators of the biological carbon pump.  相似文献   
108.
Mixed‐species animal groups (MSGs) are widely acknowledged to increase predator avoidance and foraging efficiency, among other benefits, and thereby increase participants' fitness. Diversity in MSG composition ranges from two to 70 species of very similar or completely different phenotypes. Yet consistency in organization is also observable in that one or a few species usually have disproportionate importance for MSG formation and/or maintenance. We propose a two‐dimensional framework for understanding this diversity and consistency, concentrating on the types of interactions possible between two individuals, usually of different species. One axis represents the similarity of benefit types traded between the individuals, while the second axis expresses asymmetry in the relative amount of benefits/costs accrued. Considering benefit types, one extreme represents the case of single‐species groups wherein all individuals obtain the same supplementary, group‐size‐related benefits, and the other extreme comprises associations of very different, but complementary species (e.g. one partner creates access to food while the other provides vigilance). The relevance of social information and the matching of activities (e.g. speed of movement) are highest for relationships on the supplementary side of this axis, but so is competition; relationships between species will occur at points along this gradient where the benefits outweigh the costs. Considering benefit amounts given or received, extreme asymmetry occurs when one species is exclusively a benefit provider and the other a benefit user. Within this parameter space, some MSG systems are constrained to one kind of interaction, such as shoals of fish of similar species or leader–follower interactions in fish and other taxa. Other MSGs, such as terrestrial bird flocks, can simultaneously include a variety of supplementary and complementary interactions. We review the benefits that species obtain across the diversity of MSG types, and argue that the degree and nature of asymmetry between benefit providers and users should be measured and not just assumed. We then discuss evolutionary shifts in MSG types, focusing on drivers towards similarity in group composition, and selection on benefit providers to enhance the benefits they can receive from other species. Finally, we conclude by considering how individual and collective behaviour in MSGs may influence both the structure and processes of communities.  相似文献   
109.
The objective was to evaluate the influence of colony aging in a Swiss Webster (SW) outbred stock used as recipients for embryo transfer. In the first study, a retrospective analysis was performed throughout several generations during a 38-month period in 2,398 embryos transferred to 108 SW recipients. A decrease in the percentage of live pups from transferred embryos was found at the end of the period. Impairment occurred due to the incidence of maternal cannibalism that increased from 0% to 67-100% (P<0.05), while pregnancy rate (pregnant/transferred recipients) and number of pups per delivered female were not affected throughout the period (P=NS). A following study was carried out to compare the reproductive performance of SW stock vs. B6D2F1 hybrid females in a 5-year interval. The study was conducted on a total of 893 embryos transferred to 40 females (20 SW and 20 B6D2F1) in Year #1, and 514 embryos transferred to 30 females (15 SW and 15 B6D2F1) in Year #5. No cases of maternal cannibalism were found on Year #1 in any of the strains (0/10 and 0/10). However, an incidence of 44,4% (4/9) was seen on Year #5 for SW, while for B6D2F1 the incidence was 0% (0/12) (P<0.05). Further examination of the uterus showed endometrial cysts and abnormal implantation sites in SW on Year #5 but not in B6D2F1 females. In conclusion, this study reports an impairment of the reproductive performance of an early aged SW outbred stock colony mainly due to the occurrence of maternal cannibalism. This finding has important implications for embryo transfer programs conducted in mouse facilities.  相似文献   
110.
BackgroundAedes aegypti mosquito-borne viruses including Zika (ZIKV), dengue (DENV), yellow fever (YFV), and chikungunya (CHIKV) have emerged and re-emerged globally, resulting in an elevated burden of human disease. Aedes aegypti is found worldwide in tropical, sub-tropical, and temperate areas. The characterization of mosquito blood meals is essential to understand the transmission dynamics of mosquito-vectored pathogens.Methodology/principal findingsHere, we report Ae. aegypti and Culex quinquefasciatus host feeding patterns and arbovirus transmission in Northern Mexico using a metabarcoding-like approach with next-generation deep sequencing technology. A total of 145 Ae. aegypti yielded a blood meal analysis result with 107 (73.8%) for a single vertebrate species and 38 (26.2%) for two or more. Among the single host blood meals for Ae. aegypti, 28.0% were from humans, 54.2% from dogs, 16.8% from cats, and 1.0% from tortoises. Among those with more than one species present, 65.9% were from humans and dogs. For Cx. quinquefasciatus, 388 individuals yielded information with 326 (84%) being from a single host and 63 (16.2%) being from two or more hosts. Of the single species blood meals, 77.9% were from dogs, 6.1% from chickens, 3.1% from house sparrows, 2.4% from humans, while the remaining 10.5% derived from other 12 host species. Among those which had fed on more than one species, 11% were from dogs and humans, and 89% of other host species combinations. Forage ratio analysis revealed dog as the most over-utilized host by Ae. aegypti (= 4.3) and Cx. quinquefasciatus (= 5.6) and the human blood index at 39% and 4%, respectively. A total of 2,941 host-seeking female Ae. aegypti and 3,536 Cx. quinquefasciatus mosquitoes were collected in the surveyed area. Of these, 118 Ae. aegypti pools and 37 Cx. quinquefasciatus pools were screened for seven arboviruses (ZIKV, DENV 1–4, CHIKV, and West Nile virus (WNV)) using qRT-PCR and none were positive (point prevalence = 0%). The 95%-exact upper limit confidence interval was 0.07% and 0.17% for Ae. aegypti and Cx. quinquefasciatus, respectivelyConclusions/significanceThe low human blood feeding rate in Ae. aegypti, high rate of feeding on mammals by Cx. quinquefasciatus, and the potential risk to transmission dynamics of arboviruses in highly urbanized areas of Northern Mexico is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号