首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5230篇
  免费   441篇
  国内免费   1篇
  5672篇
  2023年   58篇
  2022年   96篇
  2021年   163篇
  2020年   103篇
  2019年   131篇
  2018年   147篇
  2017年   130篇
  2016年   217篇
  2015年   292篇
  2014年   306篇
  2013年   323篇
  2012年   427篇
  2011年   387篇
  2010年   278篇
  2009年   197篇
  2008年   295篇
  2007年   262篇
  2006年   258篇
  2005年   178篇
  2004年   177篇
  2003年   178篇
  2002年   148篇
  2001年   55篇
  2000年   30篇
  1999年   64篇
  1998年   45篇
  1997年   17篇
  1996年   35篇
  1995年   26篇
  1994年   26篇
  1993年   26篇
  1992年   33篇
  1991年   40篇
  1990年   20篇
  1989年   18篇
  1988年   18篇
  1987年   21篇
  1986年   15篇
  1985年   19篇
  1984年   29篇
  1983年   22篇
  1982年   18篇
  1981年   18篇
  1980年   19篇
  1978年   14篇
  1977年   19篇
  1976年   17篇
  1884年   13篇
  1882年   12篇
  1881年   12篇
排序方式: 共有5672条查询结果,搜索用时 15 毫秒
41.
Nod1 and Nod2 are intracellular proteins that are involved in host recognition of specific bacterial molecules and are genetically associated with several inflammatory diseases. Nod1 and Nod2 stimulation activates NF-kappaB through RICK, a caspase-recruitment domain-containing kinase. However, the mechanism by which RICK activates NF-kappaB in response to Nod1 and Nod2 stimulation is unknown. Here we show that RICK is conjugated with lysine-63-linked polyubiquitin chains at lysine 209 (K209) located in its kinase domain upon Nod1 or Nod2 stimulation and by induced oligomerization of RICK. Polyubiquitination of RICK at K209 was essential for RICK-mediated IKK activation and cytokine/chemokine secretion. However, RICK polyubiquitination did not require the kinase activity of RICK or alter the interaction of RICK with NEMO, a regulatory subunit of IkappaB kinase (IKK). Instead, polyubiquitination of RICK was found to mediate the recruitment of TAK1, a kinase that was found to be essential for Nod1-induced signaling. Thus, RICK polyubiquitination links TAK1 to IKK complexes, a critical step in Nod1/Nod2-mediated NF-kappaB activation.  相似文献   
42.

Aquatic systems have been extensively altered by human structures (e.g., construction of dams/canals) and these have major impacts on the connectivity of wildlife populations through the loss and isolation of suitable habitats. Habitat loss and isolation affect gene flow and influence the persistence of populations in time and space by restricting movements. Isolation can result in higher inbreeding, lower genetic diversity, and greater genetic structure, which may render populations more vulnerable to environmental changes, and thus to extinction. Given the ubiquity and the persistence of dams and canals in space and time, it is crucial to understand their effects on the population genetics of aquatic species. Here, we documented the genetic diversity and structure of painted turtle (Chrysemys picta) populations in the Rideau Canal, Ontario, Canada. More specifically, we used 13 microsatellites to evaluate the influence of locks on genetic variation in 822 painted turtles from 22 sites evenly distributed along the 202-km canal. Overall, we found low, but significant, genetic differentiation suggesting that some dispersal is occurring throughout the canal. In addition, we showed that locks contribute to the genetic differentiation observed in the system. Clustering analysis revealed two distinct genetic groups whose boundary is associated with a series of six locks. Our results illustrate how artificial waterways, such as canal systems, can influence population genetic structure. We highlight the importance of adopting management plans that can mitigate the impacts of human infrastructure and preserve gene flow across the landscape to maintain viable populations.

  相似文献   
43.
44.
45.
2,4-dichlorophenoxyacetic (2,4-D) applied to excised leaves of Cassia fasciculata modified the dark-induced (scotonasty) and light-induced (photonasty) leaflet movements, showing that this compound acts on rapid turgor variation and the concomitant ion migrations, in particular K+. 2,4-D inhibited the scotonastic closure in a dose-dependent manner from 10–8 M to 10–5 M and promoted the photonastic opening in the same range of concentrations. The compound acted rapidly since a treatment as short as 5 min gave an obvious effect on the motile reaction; however, a lag period of 45–60 min was needed to observe its effect. Although 2,4-D is a weak acid, its greatest physiological efficiency was obtained with pH values close to neutrality. The physiological results are discussed in relation to the chemical properties and the characteristics of transport of the molecule.Abbreviations ABA abscisic acid - 6-BAP 6-benzylaminopurine - 2,4-D 2,4 dichlorophenoxyacetic acid - GA3 gibberellic acid - HEPES N-[2-hydroxyethyl] piperazine-N-[2-ethanesulphonic acid] - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - MES 2-(N-morpholino)-ethanesulphonic acid  相似文献   
46.
Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.  相似文献   
47.
The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge‐transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near‐ultraviolet‐harvesting OPVs—has largely not been investigated. Here, aggregation‐induced room‐temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open‐circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy‐band splitting result in ultrafast CT and charge separation with nonradiative energy losses of <250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next‐generation active materials and films for near‐ultraviolet OPVs with open‐circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy‐atom‐containing active materials. Molecular aggregation through thin‐film processing provides an alternative route to accessing 100% triplet states on photoexcitation.  相似文献   
48.
High voltage-activated calcium channels (HVACCs) are essential for synaptic and nociceptive transmission. Although blocking HVACCs can effectively reduce pain, this treatment strategy is associated with intolerable adverse effects. Neuronal HVACCs are typically composed of α(1), β (Cavβ), and α(2)δ subunits. The Cavβ subunit plays a crucial role in the membrane expression and gating properties of the pore-forming α(1) subunit. However, little is known about how nerve injury affects the expression and function of Cavβ subunits in primary sensory neurons. In this study, we found that Cavβ(3) and Cavβ(4) are the most prominent subtypes expressed in the rat dorsal root ganglion (DRG) and dorsal spinal cord. Spinal nerve ligation (SNL) in rats significantly increased mRNA and protein levels of the Cavβ(3), but not Cavβ(4), subunit in the DRG. SNL also significantly increased HVACC currents in small DRG neurons and monosynaptic excitatory postsynaptic currents of spinal dorsal horn neurons evoked from the dorsal root. Intrathecal injection of Cavβ(3)-specific siRNA significantly reduced HVACC currents in small DRG neurons and the amplitude of monosynaptic excitatory postsynaptic currents of dorsal horn neurons in SNL rats. Furthermore, intrathecal treatment with Cavβ(3)-specific siRNA normalized mechanical hyperalgesia and tactile allodynia caused by SNL but had no significant effect on the normal nociceptive threshold. Our findings provide novel evidence that increased expression of the Cavβ(3) subunit augments HVACC activity in primary sensory neurons and nociceptive input to dorsal horn neurons in neuropathic pain. Targeting the Cavβ(3) subunit at the spinal level represents an effective strategy for treating neuropathic pain.  相似文献   
49.
50.
Infection is a leading cause of neonatal morbidity and mortality worldwide. Premature neonates are particularly susceptible to infection because of physiologic immaturity, comorbidity, and extraneous medical interventions. Additionally premature infants are at higher risk of progression to sepsis or severe sepsis, adverse outcomes, and antimicrobial toxicity. Currently initial diagnosis is based upon clinical suspicion accompanied by nonspecific clinical signs and is confirmed upon positive microbiologic culture results several days after institution of empiric therapy. There exists a significant need for rapid, objective, in vitro tests for diagnosis of infection in neonates who are experiencing clinical instability. We used immunoassays multiplexed on microarrays to identify differentially expressed serum proteins in clinically infected and non-infected neonates. Immunoassay arrays were effective for measurement of more than 100 cytokines in small volumes of serum available from neonates. Our analyses revealed significant alterations in levels of eight serum proteins in infected neonates that are associated with inflammation, coagulation, and fibrinolysis. Specifically P- and E-selectins, interleukin 2 soluble receptor alpha, interleukin 18, neutrophil elastase, urokinase plasminogen activator and its cognate receptor, and C-reactive protein were observed at statistically significant increased levels. Multivariate classifiers based on combinations of serum analytes exhibited better diagnostic specificity and sensitivity than single analytes. Multiplexed immunoassays of serum cytokines may have clinical utility as an adjunct for rapid diagnosis of infection and differentiation of etiologic agent in neonates with clinical decompensation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号