首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5374篇
  免费   486篇
  2023年   50篇
  2022年   86篇
  2021年   168篇
  2020年   100篇
  2019年   132篇
  2018年   149篇
  2017年   129篇
  2016年   217篇
  2015年   295篇
  2014年   307篇
  2013年   321篇
  2012年   434篇
  2011年   389篇
  2010年   277篇
  2009年   197篇
  2008年   298篇
  2007年   264篇
  2006年   259篇
  2005年   177篇
  2004年   185篇
  2003年   186篇
  2002年   147篇
  2001年   61篇
  2000年   40篇
  1999年   64篇
  1998年   45篇
  1997年   22篇
  1996年   35篇
  1995年   24篇
  1994年   28篇
  1993年   26篇
  1992年   40篇
  1991年   45篇
  1990年   29篇
  1989年   30篇
  1988年   32篇
  1987年   32篇
  1986年   23篇
  1985年   22篇
  1984年   35篇
  1983年   30篇
  1982年   20篇
  1981年   20篇
  1980年   23篇
  1977年   30篇
  1976年   20篇
  1974年   15篇
  1973年   20篇
  1971年   15篇
  1968年   15篇
排序方式: 共有5860条查询结果,搜索用时 296 毫秒
911.
A maximum likelihood reconstruction method for an asymmetric reconstruction of the infectious P22 bacteriophage virion is described and demonstrated on a subset of the images used in [Lander, G.C., Tang, L., Casjens, S.R., Gilcrease, E.B., Prevelige, P., Poliakov, A., Potter, C.S., Carragher, B., Johnson, J.E., 2006. The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312(5781), 1791–1795]. The method makes no assumptions at any stage regarding the structure of the phage tail or the relative rotational orientation of the phage tail and capsid but rather the structure and the rotation angle are determined as a part of the analysis. A statistical method for determining resolution consistent with maximum likelihood principles based on ideas for cylinders analogous to the ideas for spheres that are embedded in the Fourier Shell Correlation method is described and demonstrated on the P22 reconstruction. With a correlation threshold of .95, the resolution in the tail measured radially is greater than (33.3 Å) and measured axially is greater than (70.6 Å) both with probability p=0.02.  相似文献   
912.
913.
Aims5-HT6 receptor subtype is predominantly expressed in the brain, and preclinical evidence suggests its potential role in the cognitive function. Brain microdialysis studies demonstrated that 5-HT6 antagonists enhance not only cholinergic but also monoaminergic neurotransmission, a property that may differentiate from acetylcholine esterase (AChE) inhibitors such as donepezil. In this study we compared the antidepressant-like effects of 5-HT6 antagonists with donepezil to determine whether their different effects on monoamines are behaviorally relevant.Main methodsSelective 5-HT6 antagonists (SB-399885 and SB-271046) and donepezil were evaluated in the rat forced swimming test since this is known to identify drugs such as antidepressants which can increase brain monoamine levels. Binding assay was undertaken by using [125I]SB-258585 to measure brain 5-HT6 receptor occupancy.Key findingsSystemic administration of SB-399885 (3 and 10 mg/kg, i.p.) and SB-271046 (10 and 30 mg/kg, i.p.) produced a significant reduction of immobility time in the rat forced swimming test with a similar profile in terms of 5-HT6 receptor occupancy (62 and 96% for 3 and 10 mg/kg SB-399885 respectively; 56 and 84% for 10 and 30 mg/kg SB-271046 respectively). In contrast, donepezil (0.5 and 1 mg/kg i.p.) did not show any effects in this model.SignificanceThese data suggest that 5-HT6 antagonists, at doses corresponding to those occupy central 5-HT6 receptors, could have an antidepressive effect in humans. This may differentiate 5-HT6 antagonists from AChE inhibitors with respect to the mood control in the symptomatic treatment of Alzheimer's disease.  相似文献   
914.
GTP cyclohydrolase I (GCYH-I) is an essential Zn2+-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in ∼25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e.g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn2+-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn2+ starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and active-site architecture. While GCYH-IA is a unimodular, homodecameric, Zn2+-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development.The Zn2+-dependent enzyme GTP cyclohydrolase I (GCYH-I; EC 3.5.4.16) is the first enzyme of the de novo tetrahydrofolate (THF) biosynthesis pathway (Fig. (Fig.1)1) (38). THF is an essential cofactor in one-carbon transfer reactions in the synthesis of purines, thymidylate, pantothenate, glycine, serine, and methionine in all kingdoms of life (38), and formylmethionyl-tRNA in bacteria (7). Recently, it has also been shown that GCYH-I is required for the biosynthesis of the 7-deazaguanosine-modified tRNA nucleosides queuosine and archaeosine produced in Bacteria and Archaea (44), respectively, as well as the 7-deazaadenosine metabolites produced in some Streptomyces species (33). GCYH-I is encoded in Escherichia coli by the folE gene (28) and catalyzes the conversion of GTP to 7,8-dihydroneopterin triphosphate (55), a complex reaction that begins with hydrolytic opening of the purine ring at C-8 of GTP to generate an N-formyl intermediate, followed by deformylation and subsequent rearrangement and cyclization of the ribosyl moiety to generate the pterin ring in THF (Fig. (Fig.1).1). Notably, the enzyme is dependent on an essential active-site Zn2+ that serves to activate a water molecule for nucleophilic attack at C-8 in the first step of the reaction (2).Open in a separate windowFIG. 1.Reaction catalyzed by GCYH-I, and metabolic fate of 7,8-dihydroneopterin triphosphate.A homologous GCYH-I is found in mammals and other higher eukaryotes, where it catalyzes the first step of the biopterin (BH4) pathway (Fig. (Fig.1),1), an essential cofactor in the biosynthesis of tyrosine and neurotransmitters, such as serotonin and l-3,4-dihydroxyphenylalanine (3, 52). Recently, a distinct class of GCYH-I enzymes, GCYH-IB (encoded by the folE2 gene), was discovered in microbes (26% of sequenced Bacteria and most Archaea) (12), including several clinically important human pathogens, e.g., Neisseria and Staphylococcus species. Notably, GCYH-IB is absent in eukaryotes.The distribution of folE (gene product renamed GCYH-IA) and folE2 (GCYH-IB) in bacteria is diverse (12). The majority of organisms possess either a folE (65%; e.g., Escherichia coli) or a folE2 (14%; e.g., Neisseria gonorrhoeae) gene. A significant number (12%; e.g., B. subtilis) possess both genes (a subset of 50 bacterial species is shown in Table Table1),1), and 9% lack both genes, although members of the latter group are mainly intracellular or symbiotic bacteria that rely on external sources of folate. The majority of Archaea possess only a folE2 gene, and the encoded GCYH-IB appears to be necessary only for the biosynthesis of the modified tRNA nucleoside archaeosine (44) except in the few halophilic Archaea that are known to synthesize folates, such as Haloferax volcanii, where GCYH-IB is involved in both archaeosine and folate formation (13, 44).

TABLE 1.

Distribution and candidate Zur-dependent regulation of alternative GCYH-I genes in bacteriaa
OrganismcPresence of:
folEfolE2
Enterobacteria
    Escherichia coli+
    Salmonella typhimurium+
    Yersinia pestis+
    Klebsiella pneumoniaeb++a
    Serratia marcescens++a
    Erwinia carotovora+
    Photorhabdus luminescens+
    Proteus mirabilis+
Gammaproteobacteria
    Vibrio cholerae+
    Acinetobacter sp. strain ADP1++a
    Pseudomonas aeruginosa++a
    Pseudomonas entomophila L48++a
    Pseudomonas fluorescens Pf-5++a
    Pseudomonas syringae++a
    Pseudomonas putida++a
    Hahella chejuensis KCTC 2396++a
    Chromohalobacter salexigens DSM 3043++a
    Methylococcus capsulatus++a
    Xanthomonas axonopodis++a
    Xanthomonas campestris++a
    Xylella fastidiosa++a
    Idiomarina loihiensis+
    Colwellia psychrerythraea++
    Pseudoalteromonas atlantica T6c++a
    Pseudoalteromonas haloplanktis TAC125++
    Alteromonas macleodi+
    Nitrosococcus oceani++
    Legionella pneumophila+
    Francisella tularensis+
Betaproteobacteria
    Chromobacterium violaceum+
    Neisseria gonorrhoeae+
    Burkholderia cepacia R18194++
    Burkholderia cenocepacia AU 1054++
    Burkholderia xenovorans+
    Burkholderia mallei+
    Bordetella pertussis+
    Ralstonia eutropha JMP134+
    Ralstonia metallidurans++
    Ralstonia solanacearum+
    Methylobacillus flagellatus+
    Nitrosomonas europaea+
    Azoarcus sp.++
Bacilli/Clostridia
    Bacillus subtilisd++
    Bacillus licheniformis++
    Bacillus cereus+
    Bacillus halodurans++
    Bacillus clausii+
    Geobacillus kaustophilus+
    Oceanobacillus iheyensis+
    Staphylococcus aureus+
Open in a separate windowaGenes that are preceded by candidate Zur binding sites.bZur-regulated cluster is on the virulence plasmid pLVPK.cExamples of organisms with no folE genes are in boldface type.dZn-dependent regulation of B. subtilis folE2 by Zur was experimentally verified (17).Expression of the Bacillus subtilis folE2 gene, yciA, is controlled by the Zn2+-dependent Zur repressor and is upregulated under Zn2+-limiting conditions (17). This led us to propose that the GCYH-IB family utilizes a metal other than Zn2+ to allow growth in Zn2+-limiting environments, a hypothesis strengthened by the observation that an archaeal ortholog from Methanocaldococcus jannaschii has recently been shown to be Fe2+ dependent (22). To test this hypothesis, we investigated the physiological role of GCYH-IB in B. subtilis, an organism that contains both isozymes, as well as the metal dependence of B. subtilis GCYH-IB in vitro. To gain a structural understanding of the metal dependence of GCYH-IB, we determined high-resolution crystal structures of Zn2+- and Mn2+-bound forms of the N. gonorrhoeae ortholog. Notably, although the GCYH-IA and -IB enzymes belong to the tunneling-fold (T-fold) superfamily, there are significant differences in their global and active-site architecture. These studies shed light on the physiological significance of the alternative folate biosynthesis isozymes in bacteria exposed to various metal environments, and offer a structural understanding of the differential metal dependence of GCYH-IA and -IB.  相似文献   
915.
Selective substrate uptake controls initiation of macromolecular secretion by type IV secretion systems in gram-negative bacteria. Type IV coupling proteins (T4CPs) are essential, but the molecular mechanisms governing substrate entry to the translocation pathway remain obscure. We report a biochemical approach to reconstitute a regulatory interface between the plasmid R1 T4CP and the nucleoprotein relaxosome dedicated to the initiation stage of plasmid DNA processing and substrate presentation. The predicted cytosolic domain of T4CP TraD was purified in a predominantly monomeric form, and potential regulatory effects of this protein on catalytic activities exhibited by the relaxosome during transfer initiation were analyzed in vitro. TraDΔN130 stimulated the TraI DNA transesterase activity apparently via interactions on both the protein and the DNA levels. TraM, a protein interaction partner of TraD, also increased DNA transesterase activity in vitro. The mechanism may involve altered DNA conformation as TraM induced underwinding of oriT plasmid DNA in vivo (ΔLk = −4). Permanganate mapping of the positions of duplex melting due to relaxosome assembly with TraDΔN130 on supercoiled DNA in vitro confirmed localized unwinding at nic but ruled out formation of an open complex compatible with initiation of the TraI helicase activity. These data link relaxosome regulation to the T4CP and support the model that a committed step in the initiation of DNA export requires activation of TraI helicase loading or catalysis.Type IV secretion systems (T4SS) in gram-negative bacteria mediate translocation of macromolecules out of the bacterial cell (14). The transmission of effector proteins and DNA into plant cells or other bacteria via cell-cell contact is one example of their function, and conjugation systems as well as the transferred DNA (T-DNA) delivery system of the phytopathogen Agrobacterium tumefaciens are prototypical of the T4SS family. Macromolecular translocation is achieved by a membrane-spanning protein machinery comprised of 12 gene products, VirB1 to VirB11 and an associated factor known as the coupling protein (VirD4) (66). The T4SS-associated coupling protein (T4CP) performs a crucial function in recognition of appropriate secretion substrates and governing entry of those molecules to the translocation pathway (7, 8, 10, 30, 41). In conjugation systems substrate recognition is applied to the relaxosome, a nucleoprotein complex of DNA transfer initiator proteins assembled specifically at the plasmid origin of transfer (oriT). In current models, initiation of the reactions that provide the single strand of plasmid (T-strand) DNA for secretion to recipient bacteria is expected to resemble the initiation of chromosomal replication (for reviews, see references 18, 54, and 81). Controlled opening of the DNA duplex is required to permit entry of the DNA processing machinery. The task of remodeling the conjugative oriT is generally ascribed to two or three relaxosome auxiliary factors, of host and plasmid origin, which occupy specific DNA binding sites at this locus. Intrinsic to the relaxosome is also a site- and strand-specific DNA transesterase activity that breaks the phosphodiester backbone at nic (5). Upon cleavage, the transesterase enzyme (also called relaxase) forms a reversible phosphotyrosyl linkage to the 5′ end of the DNA. Duplex unwinding initiating from this site produces the single-stranded T strand to be exported. A wealth of information is available supporting the importance of DNA sequence recognition and binding by relaxosome components at oriT to the transesterase reaction in vitro and for effective conjugative transfer (for reviews, see references 18, 54, and 81). On the other hand, the mechanisms controlling release of the 3′-OH generated at nic and the subsequent DNA unwinding stage remain obscure.Equally little is known about the process of nucleoprotein uptake by the transport channel. DNA-independent translocation of the relaxases TrwC (R388), MobA (RSF1010), and VirD2 (Ti plasmid) has been demonstrated; thus, current models propose that the relaxase component of the protein-DNA adduct is the substrate actively secreted by the transport system after interaction with the T4CP (42, 66). Cotransport of the covalently linked single-stranded T strand occurs concurrently (42). The mechanisms underlying relaxosome recognition by T4CPs are not understood. Direct interactions have been observed biochemically between the RP4 TraG protein and relaxase proteins of the cognate plasmid (65) and heterologous relaxosomes that it mobilizes (73, 76). TrwB of R388 interacts in vitro with relaxase TrwC and an auxiliary component, TrwA (44). TraD proteins of plasmid R1 and F are known to interact with the auxiliary relaxosome protein TraM (20) via a cluster of C-terminal amino acids (3, 62). Extensive mutagenic analyses (45) plus recent three-dimensional structural data for a complex of the TraM tetramerization domain and the C-terminal tail of TraD (46) have provided more detailed models for the intermolecular contacts involved in recognition.Application of the Cre recombinase assay for translocation of conjugative relaxases as well as effector proteins to eukaryotic cells is currently the most promising approach to elucidate protein motifs recognized by T4CPs (56, 68, 78, 79). Despite that progress, the nature of the interactions between a T4CP and its target protein that initiate secretion and the mechanisms controlling this step remain obscure. In contrast to systems dedicated specifically to effector protein translocation, conjugation systems mobilize nucleoprotein complexes that additionally exhibit catalytic activities, which can be readily monitored. These models are therefore particularly well suited to investigate aspects of regulation occurring at the physical interface of a T4CP and its secretion substrate. For this purpose the MOBF family of DNA-mobilizing systems is additionally advantageous, since DNA processing within this family features the fusion of a dedicated conjugative helicase to the DNA transesterase enzyme within a single bifunctional protein. The TraI protein of F-like plasmids, originally described as Escherichia coli DNA helicase I (1, 2, 23), and the related TrwC protein of plasmid R388 (25) are well characterized (reviewed in reference 18). Early work by Llosa et al. revealed a complex domain arrangement for TrwC (43). Similar analyses with TraI identified nonoverlapping transesterase and helicase domains (6, 77), while the remaining intermediate and C-terminal regions of the protein additionally provide functions essential to effective conjugative transfer (49, 71). The ability to physically separate the catalytic domains of TraI and TrwC has facilitated a detailed biochemical characterization of their DNA transesterase, ATPase, and DNA-unwinding reactions. Nonetheless, failure of the physically disjointed polypeptides to complement efficient conjugative transfer when coexpressed indicates a role(s) for these proteins in the strand transfer process that goes beyond the need for their dual catalytic activities (43, 50). The assignment of additional functional properties to regions within TraI is a focus of current investigation (16, 29, 49).In all systems studied thus far, conditions used to reconstitute relaxosomes on a supercoiled oriT plasmid have not supported the initiation steps necessary to enable duplex unwinding by a conjugative helicase. The question remains open whether additional protein components are required and/or whether the pathway of initiation is subject to specific repression. In the present study, we applied the IncFII plasmid R1 paradigm to investigate the potential for interaction between purified components of the relaxosome and its cognate T4CP, TraD, to exert regulatory effects on relaxosome activities in vitro. In this and in the accompanying report (72), we present evidence for wide-ranging stimulatory effects of the cytoplasmic domain of TraD protein and its interaction partner TraM on multiple aspects of relaxosome function.  相似文献   
916.
917.
Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead photoconvert between stable blue and green light-absorbing forms Pb and Pg, respectively. Here, we show that the distinctive absorption properties of cyanochromes are facilitated through the binding of phycocyanobilin via two stable cysteine-based thioether linkages within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. Absorption, resonance Raman and infrared spectroscopy, and molecular modeling of the Te-PixJ GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) domain assembled with phycocyanobilin are consistent with attachments to the C31 carbon of the ethylidene side chain and the C4 or C5 carbons in the A–B methine bridge to generate a double thioether-linked phycoviolobilin-type chromophore. These spectroscopic methods combined with NMR data show that the bilin is fully protonated in the Pb and Pg states and that numerous conformation changes occur during Pb → Pg photoconversion. Also identified were a number of photochromically inactive mutants with strong yellow or red fluorescence that may be useful for fluorescence-based cell biological assays. Phylogenetic analyses detected cyanochromes capable of different signaling outputs in a wide range of cyanobacterial species. One unusual case is the Synechocystis cyanochrome Etr1 that also binds ethylene, suggesting that it works as a hybrid receptor to simultaneously integrate light and hormone signals.Phytochromes (Phys)3 comprise a large and diverse superfamily of photoreceptors that regulate a wide range of physiological responses in plants, fungi, bacteria, and cyanobacteria (13). They are unique among photoreceptors by being able to photoconvert between two stable states, a red light-absorbing Pr form that is typically the dark-adapted and biologically inactive conformer and a far-red light-absorbing Pfr form that requires light for its production and is typically the biologically active conformer. By interconverting between Pr and Pfr, Phys act as light-regulated switches in controlling processes ranging from phototaxis and pigmentation in bacteria to seed germination, photomorphogenesis, and flowering time in higher plants.Light absorption by Phys is directed by a bilin (or linear tetrapyrrole) chromophore produced by the oxidative cleavage of heme. Although bacterial and fungal Phys use the immediate cleavage product biliverdin (BV), cyanobacterial and higher plant Phys use phycocyanobilin (PCB) and phytochromobilin, respectively, produced by enzymatic reduction of BV (1, 2). The bilin is then covalently bound autocatalytically to the photosensory unit of the apoprotein, which typically contains a sequence of Per/Arndt/Sim (PAS), cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF), and Phy-associated (PHY) domains. Intimate contact between the bilin and surrounding protein residues then generates the unique photochromic properties of Phys. Recent three-dimensional structures of the Pr form of several bacterial Phys (BphPs) and two cyanobacterial Phys (Cphs) have shown that the bilin is deeply buried within the GAF domain in a ZZZssa configuration and that the connection between the GAF and PAS domains is stabilized by a rare figure-of-eight knot involving the region upstream of the PAS domain being lassoed by a conserved loop within the GAF domain (49). Although the structure of Pfr remains unsolved, various physicochemical studies have proposed that photoconversion involves a rotation of one of the three methine bridges between the pyrrole rings (1, 1014). This rotation then induces much slower thermally driven movements of the protein to initiate signal transduction.In microorganisms, Pfr can activate a variety of signaling systems using output motifs directly appended to the C-terminal end of the photosensory region. The most prevalent are histidine kinase domains that then begin specific two-component phosphorelays (3, 15, 16). Although the output of plant Phys remains unclear, the presence of a C-terminal HK-related domain suggests that they also work as light-regulated protein kinases (17).In addition to the canonical Phys, it has become apparent through phylogenetic and biochemical studies that a heterogeneous collection of Phy-like photoreceptors exists (e.g. Refs. 3 and 18). These include Phys that prefer Pfr as the dark-adapted state (7, 19, 20), Phys that photoconvert from Pr to shorter wavelength-absorbing “near red” or Pnr forms (6, 21), and Phy-like photoreceptors that bind bilins but instead photoconvert between forms with maximal absorption other than red and far-red light (2225). Often these Phy-like sequences are missing key residues or domains common among canonical Phys, suggesting that they employ novel bilins as chromophores, bind the bilin in different architectures, and/or use distinct photochemistries.One subclass of novel Phy-like photoreceptors present in a number of cyanobacteria, which we have designated cyanochromes (or Cycs) to better distinguish them from Cphs, is exemplified by Synechocystis sp. PCC6803 (Syn) PixJ (or TaxD1, locus sll0041) and its relatives. Syn-PixJ was discovered based on its involvement in blue light-mediated phototaxis in this mesophilic cyanobacterium (26, 27) with its close homolog Te-PixJ (locus tll0569) then found in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 by sequence similarity (28). Like Cphs, the cyanochromes tested thus far covalently bind PCB but then generate photoreceptors that convert between blue and green light-absorbing forms designated Pb and Pg, respectively (22, 24, 29). Subsequent studies proposed that PCB is converted to phycoviolobilin (PVB) upon attachment to the apoprotein (30). PVB differs from PCB by having a methylene instead of a methine bridge between the A and B pyrrole rings, which blue-shifts the absorption of the chromophore by shortening the π-conjugation system. Phototransformation of Pb to Pg could then occur by a mechanism similar to Phys.How Te-PixJ and related cyanochromes bind PCB to generate more blue-shifted PVB-type chromophores remains unclear. Like Cphs, two cyanochromes examples link PCB via a thioether linkage between a cysteine in the Cyc-GAF domain and the C31 carbon of the ethylidene side chain of ring A (24, 28). Additionally, loss of the C4C5 double bond is necessary to generate PVB. One model by Ishizuka et al. (30) from studies with Te-PixJ proposed that the double bond moves from the C4-C5 position to the C2-C3 position by an autoisomerase activity intrinsic to the GAF domain. A more recent model by Rockwell et al. (24) using another Syn-PixJ relative in T. elongatus, Tlr0924, invoked the possibility of a second cysteine that also participates in PCB ligation. This cysteine was proposed to bind the bilin at the C10 position via a reversible thioether linkage. In the dark-adapted Pb state, the second linkage would then be formed to generate a rubin-like chromophore attached to the bridge between the B and C pyrrole rings. This bond would then break upon photoconversion to generate the more π-conjugated green light-absorbing photoproduct Pg.In this report, we employed a number of physicochemical approaches to help resolve the unique chromophore architecture and photochemical properties of cyanochromes, using Te-PixJ as the example. By independently mutagenizing the cysteine that binds the A ring ethylidene (Cys-522 (22)) and that proposed by Rockwell et al. (24) to reversibly bind the bilin at a second site (Cys-494), we demonstrate that both residues form light-stable covalent adducts with a PVB-type chromophore. In addition, we employed various spectroscopic methods to show that the bound PVB is fully protonated as both Pb and Pg, that only one pyrrole ring is active during photoconversion, and that the polypeptide may undergo extensive remodeling as Pb converts to Pg. We identified a set of conserved amino acids in Te-PixJ important for cyanochrome photochemistry, including several that when substituted generate yellow or red fluorescent chromoproteins potentially useful for cell biological applications. Phylogenetic analyses show that cyanochromes are widespread among cyanobacteria with their closest relatives being members of the red/far-red light-absorbing Phy subfamily defined by the absence of the N-terminal PAS domain (31).  相似文献   
918.
This study investigated a two-dimensional Lagrangian stochastic dispersion model for estimating water vapor fluxes and footprint over homogeneous and inhomogeneous surfaces. Over the homogeneous surface, particle trajectories were computed from a 2-D Lagrangian model forced by Eulerian velocity statistics determined by Monin–Obukhov similarity theory (MOST). For an inhomogeneous surface, the velocity and atmospheric stability profiles were computed using a second-order Eulerian closure model, and these local profiles were then used to drive the Lagrangian model. The model simulations were compared with water vapor flux measurements carried out above an irrigated bare soil site and an irrigated potato site. The inhomogeneity involved a step change in surface roughness, humidity, and temperature. Good agreement between eddy-correlation-measured and Lagrangian-model-predicted water vapor fluxes was found for both sites. Hence, this analysis demonstrates the practical utility of second-order closure models in conjunction with Lagrangian analysis to estimate the scalar footprint in planar inhomogeneous flows.  相似文献   
919.
920.
Non-pathogenic mycobacteria such us Mycobacterium smegmatis reside in macrophages within phagosomes that fuse with late endocytic/lysosomal compartments. This sequential fusion process is required for the killing of non-pathogenic mycobacteria by macrophages. Porins are proteins that allow the influx of hydrophilic molecules across the mycobacterial outer membrane. Deletion of the porins MspA, MspC and MspD significantly increased survival of M. smegmatis in J774 macrophages. However, the mechanism underlying this observation is unknown. Internalization of wild-type M. smegmatis (SMR5) and the porin triple mutant (ML16) by macrophages was identical indicating that the viability of the porin mutant in vivo was enhanced. This was not due to effects on phagosome trafficking since fusion of phagosomes containing the mutant with late endocytic compartments was unaffected. Moreover, in ML16-infected macrophages, the generation of nitric oxide (NO) was similar to the wild type-infected cells. However, ML16 was significantly more resistant to the effects of NO in vitro compared to SMR5. Our data provide evidence that porins render mycobacteria vulnerable to killing by reactive nitrogen intermediates within phagosomes probably by facilitating uptake of NO across the mycobacterial outer membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号