首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5902篇
  免费   486篇
  6388篇
  2023年   64篇
  2022年   105篇
  2021年   187篇
  2020年   121篇
  2019年   143篇
  2018年   168篇
  2017年   155篇
  2016年   250篇
  2015年   339篇
  2014年   339篇
  2013年   374篇
  2012年   480篇
  2011年   425篇
  2010年   293篇
  2009年   228篇
  2008年   329篇
  2007年   276篇
  2006年   279篇
  2005年   197篇
  2004年   196篇
  2003年   200篇
  2002年   157篇
  2001年   73篇
  2000年   51篇
  1999年   75篇
  1998年   47篇
  1997年   31篇
  1996年   44篇
  1995年   28篇
  1994年   37篇
  1993年   29篇
  1992年   37篇
  1991年   51篇
  1990年   23篇
  1989年   25篇
  1988年   20篇
  1987年   21篇
  1986年   16篇
  1985年   23篇
  1984年   31篇
  1983年   25篇
  1982年   21篇
  1981年   18篇
  1980年   18篇
  1978年   16篇
  1977年   25篇
  1976年   20篇
  1975年   14篇
  1974年   16篇
  1973年   15篇
排序方式: 共有6388条查询结果,搜索用时 15 毫秒
951.
Extracellular adenosine triphosphate (ATP) plays a central role in a wide variety of joint diseases. ATP is generated intracellularly, and the concentration of the extracellular ATP pool is determined by the regulation of its transport out of the cell. A variety of ATP transporters have been described, with connexins and pannexins the most commonly cited. Both form intercellular channels, known as gap junctions, that facilitate the transport of various small molecules between cells and mediate cell–cell communication. Connexins and pannexins also form pores, or hemichannels, that are permeable to certain molecules, including ATP. All joint tissues express one or more connexins and pannexins, and their expression is altered in some pathological conditions, such as osteoarthritis (OA) and rheumatoid arthritis (RA), indicating that they may be involved in the onset and progression of these pathologies. The aging of the global population, along with increases in the prevalence of obesity and metabolic dysfunction, is associated with a rising frequency of joint diseases along with the increased costs and burden of related illness. The modulation of connexins and pannexins represents an attractive therapeutic target in joint disease, but their complex regulation, their combination of gap-junction-dependent and -independent functions, and their interplay between gap junction and hemichannel formation are not yet fully elucidated. In this review, we try to shed light on the regulation of these proteins and their roles in ATP transport to the extracellular space in the context of joint disease, and specifically OA and RA.  相似文献   
952.
953.
In previous publications, we reported the benefits of a high‐aspect rotating‐wall vessel (HARV) over conventional bioreactors for insect‐cell cultivation in terms of reduced medium requirements and enhanced longevity. To more fully understand the effects that HARV cultivation has on longevity, the present study characterizes the mode and kinetics of Spodoptera frugiperda cell death in this quiescent environment relative to a shaker‐flask control. Data from flow cytometry and fluorescence microscopy show a greater accumulation of apoptotic cells in the HARV culture, by a factor of at least 2 at the end of the cultivation period. We present a kinetic model of growth and bimodal cell death. The model is unique for including both apoptosis and necrosis, and further, transition steps within the two pathways. Kinetic constants reveal that total cell death is reduced in the HARV and the accumulation of apoptotic cells in this vessel results from reduced depletion by lysis and secondary necrosis. The ratio of early apoptotic to necrotic cell formation is found independent of cultivation conditions. In the model, apoptosis is only well represented by an integral term, which may indicate its dependence on accumulation of some factor over time; in contrast, necrosis is adequately represented with a first‐order term. Cell‐cycle analysis shows the percent of tetraploid cells gradually decreases during cultivation in both vessels. For example, between 90% and 70% viability, tetraploid cells in the HARV drop from 43 ± 1% to 24 ± 4%. The data suggests the tetraploid phase as the likely origin for apoptosis in our cultures. Possible mechanisms for these changes in bimodal cell death are discussed, including hydrodynamic forces, cell–cell interactions, waste accumulation, and mass transport. These studies may benefit insect‐cell cultivation by increasing our understanding of cell death in culture and providing a means for further enhancing culture longevity. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 14–26, 1999.  相似文献   
954.
Amyloids, protein, and peptide assemblies in various organisms are crucial in physiological and pathological processes. Their intricate structures, however, present significant challenges, limiting our understanding of their functions, regulatory mechanisms, and potential applications in biomedicine and technology. This study evaluated the AlphaFold2 ColabFold method's structure predictions for antimicrobial amyloids, using eight antimicrobial peptides (AMPs), including those with experimentally determined structures and AMPs known for their distinct amyloidogenic morphological features. Additionally, two well-known human amyloids, amyloid-β and islet amyloid polypeptide, were included in the analysis due to their disease relevance, short sequences, and antimicrobial properties. Amyloids typically exhibit tightly mated β-strand sheets forming a cross-β configuration. However, certain amphipathic α-helical subunits can also form amyloid fibrils adopting a cross-α structure. Some AMPs in the study exhibited a combination of cross-α and cross-β amyloid fibrils, adding complexity to structure prediction. The results showed that the AlphaFold2 ColabFold models favored α-helical structures in the tested amyloids, successfully predicting the presence of α-helical mated sheets and a hydrophobic core resembling the cross-α configuration. This implies that the AI-based algorithms prefer assemblies of the monomeric state, which was frequently predicted as helical, or capture an α-helical membrane-active form of toxic peptides, which is triggered upon interaction with lipid membranes.  相似文献   
955.
Reactive metabolites have been putatively linked to many adverse drug reactions including idiosyncratic toxicities for a number of drugs with black box warnings or withdrawn from the market. Therefore, it is desirable to minimize the risk of reactive metabolite formation for lead molecules in optimization, in particular for non-life threatening chronic disease, to maximize benefit to risk ratio. This article describes our effort in addressing reactive metabolite issues for a series of 3-amino-2-pyridone inhibitors of BTK, e.g. compound 1 has a value of 459 pmol/mg protein in the microsomal covalent binding assay. Parallel approaches were taken to successfully resolve the issues: establishment of a predictive screening assay with correlation association of covalent binding assay, identification of the origin of reactive metabolite formation using MS/MS analysis of HLM as well as isolation and characterization of GSH adducts. This ultimately led to the discovery of compound 7 (RN941) with significantly reduced covalent binding of 26 pmol/mg protein.  相似文献   
956.
Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.  相似文献   
957.
958.
Megadiverse insect groups present special difficulties for biogeographers because poor classification, incomplete knowledge of taxonomy, and many undescribed species can introduce a priori sampling bias to any analysis. The historical biogeography of Sericini, a tribe of melolonthine scarabs comprising about 4000 species, was investigated using the most comprehensive and time‐calibrated molecular phylogeny available today. Problems arising through nomenclatural confusion were overcome by extensive sampling (665 species) from all major lineages of the tribe. A West Gondwanan origin of Sericini (c. 112 Ma) was reconstructed using maximum parsimony, maximum‐likelihood and model‐based ancestral area estimation. Vicariance in the tribe's earliest history separated Neotropical and Old World Sericini, whereas subsequent lower Cretaceous biogeography of the tribe was characterized by repeated migrations out of Africa, resulting in the colonization of Eurasia and Madagascar. North America was colonized from Asia during the Cenozoic and a lineage of “Modern Sericini” reinvaded Africa. Diversification dynamics revealed three independent shifts to increased speciation rates: in African ant‐adapted Trochalus, Oriental Tetraserica, and Asian and African Sericina. Southern Africa is proposed as both cradle and refuge of Sericini. This area has retained many old lineages that portray the evolution of the African Sericini fauna as a series of taxon pulses.  相似文献   
959.
960.
Applied Microbiology and Biotechnology - Global demand for biotechnological products has increased steadily over the years. Thus, need for optimized processes and reduced costs appear as a key...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号