首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5085篇
  免费   430篇
  2023年   58篇
  2022年   95篇
  2021年   162篇
  2020年   100篇
  2019年   128篇
  2018年   140篇
  2017年   127篇
  2016年   212篇
  2015年   284篇
  2014年   300篇
  2013年   317篇
  2012年   421篇
  2011年   380篇
  2010年   270篇
  2009年   192篇
  2008年   289篇
  2007年   253篇
  2006年   248篇
  2005年   173篇
  2004年   173篇
  2003年   176篇
  2002年   137篇
  2001年   54篇
  2000年   28篇
  1999年   57篇
  1998年   41篇
  1997年   16篇
  1996年   34篇
  1995年   22篇
  1994年   25篇
  1993年   24篇
  1992年   32篇
  1991年   40篇
  1990年   19篇
  1989年   18篇
  1988年   18篇
  1987年   19篇
  1986年   15篇
  1985年   18篇
  1984年   28篇
  1983年   21篇
  1982年   18篇
  1981年   18篇
  1980年   18篇
  1978年   13篇
  1977年   19篇
  1976年   16篇
  1884年   13篇
  1882年   12篇
  1881年   12篇
排序方式: 共有5515条查询结果,搜索用时 15 毫秒
211.
Theory predicts rapid genetic drift during invasions, yet many expanding populations maintain high genetic diversity. We find that genetic drift is dramatically suppressed when dispersal rates increase with the population density because many more migrants from the diverse, high‐density regions arrive at the expansion edge. When density dependence is weak or negative, the effective population size of the front scales only logarithmically with the carrying capacity. The dependence, however, switches to a sublinear power law and then to a linear increase as the density dependence becomes strongly positive. We develop a unified framework revealing that the transitions between different regimes of diversity loss are controlled by a single, universal quantity: the ratio of the expansion velocity to the geometric mean of dispersal and growth rates at expansion edge. Our results suggest that positive density dependence could dramatically alter evolution in expanding populations even when its contribution to the expansion velocity is small.  相似文献   
212.
The development of three‐dimensional (3D) cellular architectures during development and pathological processes involves intricate migratory patterns that are modulated by genetics and the surrounding microenvironment. The substrate composition of cell cultures has been demonstrated to influence growth, proliferation and migration in 2D. Here, we study the growth and dynamics of mouse embryonic fibroblast cultures patterned in a tissue sheet which then exhibits 3D growth. Using gradient light interference microscopy (GLIM), a label‐free quantitative phase imaging approach, we explored the influence of geometry on cell growth patterns and rotational dynamics. We apply, for the first time to our knowledge, dispersion‐relation phase spectroscopy (DPS) in polar coordinates to generate the radial and rotational cell mass‐transport. Our data show that cells cultured on engineered substrates undergo rotational transport in a radially independent manner and exhibit faster vertical growth than the control, unpatterned cells. The use of GLIM and polar DPS provides a novel quantitative approach to studying the effects of spatially patterned substrates on cell motility and growth.  相似文献   
213.
Characterizing the effects of force fields generated by cells on proliferation, migration and differentiation processes is challenging due to limited availability of nondestructive imaging modalities. Here, we integrate a new real‐time traction stress imaging modality, Hilbert phase dynamometry (HPD), with spatial light interference microscopy (SLIM) for simultaneous monitoring of cell growth during differentiation processes. HPD uses holographic principles to extract displacement fields from chemically patterned fluorescent grid on deformable substrates. This is converted into forces by solving an elasticity inverse problem. Since HPD uses the epi‐fluorescence channel of an inverted microscope, cellular behavior can be concurrently studied in transmission with SLIM. We studied the differentiation of mesenchymal stem cells (MSCs) and found that cells undergoing osteogenesis and adipogenesis exerted larger and more dynamic stresses than their precursors, with MSCs developing the smallest forces and growth rates. Thus, we develop a powerful means to study mechanotransduction during dynamic processes where the matrix provides context to guide cells toward a physiological or pathological outcome.   相似文献   
214.
215.
216.
217.
Although numerous studies have been carried out on the impacts of oil spills on coral physiology, most have relied on laboratory assays. This scarcity is partly explained by the difficulty of reproducing realistic conditions in a laboratory setting or of performing experiments with toxic compounds in the field. Mesocosm systems provide the opportunity to carry out such studies with safe handling of contaminants while reproducing natural conditions required by living organisms. The mesocosm design is crucial and can lead to the development of innovative technologies to mitigate environmental impacts. Therefore, this study aimed to develop a mesocosm system for studies simulating oil spills with several key advantages, including true replication and the use of gravity to control flow‐through that reduces reliance on pumps that can clog thereby decreasing errors and costs. This adaptable system can be configured to (a) have continuous flow‐through; (b) operate as an open or closed system; (c) be fed by gravity; (d) have separate mesocosm sections that can be used for individual and simultaneous experiments; and (e) simulate the migration of oil from ocean oil spills to the nearby reefs. The mesocosm performance was assessed with two experiments using the hydrocoral Millepora alcicornis and different configurations to simulate two magnitudes of oil spills. With few exceptions, physical and chemical parameters remained stable within replicates and within treatments throughout the experiments. Physical and chemical parameters that expressed change during the experiment were still within the range of natural conditions observed in Brazilian marine environments. The photosynthetic potential (Fv/Fm) of the algae associated with M. alcicornis decreased in response to an 1% crude‐oil contamination, suggesting a successful delivery of the toxic contaminant to the targeted replicates. This mesocosm is customizable and adjustable for several types of experiments and proved to be effective for studies of oil spills.  相似文献   
218.
219.
220.
Conservation breeding management aims to reduce inbreeding and maximize the retention of genetic diversity in endangered populations. However, breeding management of wild populations is still rare, and there is a need for approaches that provide data-driven evidence of the likelihood of success of alternative in situ strategies. Here, we provide an analytical framework that uses in silico simulations to evaluate, for real wild populations, (i) the degree of population-level inbreeding avoidance, (ii) the genetic quality of mating pairs, and (iii) the potential genetic benefits of implementing two breeding management strategies. The proposed strategies aim to improve the genetic quality of breeding pairs by splitting detrimental pairs and allowing the members to re-pair in different ways. We apply the framework to the wild population of the Critically Endangered helmeted honeyeater by combining genomic data and field observations to estimate the inbreeding (i.e., pair-kinship) and genetic quality (i.e., Mate Suitability Index) of all mating pairs for seven consecutive breeding seasons. We found no evidence of population-level inbreeding avoidance and that ~91.6% of breeding pairs were detrimental to the genetic health of the population. Furthermore, the framework revealed that neither proposed management strategy would significantly improve the genetic quality or reduce inbreeding of the mating pairs in this population. Our results demonstrate the usefulness of our analytical framework for testing the efficacy of different in situ breeding management strategies and for making evidence-based management decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号