Aquatic systems have been extensively altered by human structures (e.g., construction of dams/canals) and these have major impacts on the connectivity of wildlife populations through the loss and isolation of suitable habitats. Habitat loss and isolation affect gene flow and influence the persistence of populations in time and space by restricting movements. Isolation can result in higher inbreeding, lower genetic diversity, and greater genetic structure, which may render populations more vulnerable to environmental changes, and thus to extinction. Given the ubiquity and the persistence of dams and canals in space and time, it is crucial to understand their effects on the population genetics of aquatic species. Here, we documented the genetic diversity and structure of painted turtle (Chrysemys picta) populations in the Rideau Canal, Ontario, Canada. More specifically, we used 13 microsatellites to evaluate the influence of locks on genetic variation in 822 painted turtles from 22 sites evenly distributed along the 202-km canal. Overall, we found low, but significant, genetic differentiation suggesting that some dispersal is occurring throughout the canal. In addition, we showed that locks contribute to the genetic differentiation observed in the system. Clustering analysis revealed two distinct genetic groups whose boundary is associated with a series of six locks. Our results illustrate how artificial waterways, such as canal systems, can influence population genetic structure. We highlight the importance of adopting management plans that can mitigate the impacts of human infrastructure and preserve gene flow across the landscape to maintain viable populations.
Distinguishing cutaneous infection from sterile inflammation is a diagnostic challenge and currently relies upon subjective interpretation of clinical parameters, microbiological data, and nonspecific imaging. Assessing characteristic variations in leukocytic infiltration may provide more specific information. In this study, we demonstrate that homing of systemically administered monocytes tagged using indocyanine green (ICG), an FDA-approved near infrared dye, may be assessed non-invasively using clinically-applicable laser angiography systems to investigate cutaneous inflammatory processes. RAW 264.7 mouse monocytes co-incubated with ICG fluoresce brightly in the near infrared range. In vitro, the loaded cells retained the ability to chemotax toward monocyte chemotactic protein-1. Following intravascular injection of loaded cells into BALB/c mice with induced sterile inflammation (Complete Freund’s Adjuvant inoculation) or infection (Group A Streptococcus inoculation) of the hind limb, non-invasive whole animal imaging revealed local fluorescence at the inoculation site. There was significantly higher fluorescence of the inoculation site in the infection model than in the inflammation model as early as 2 hours after injection (p<0.05). Microscopic examination of bacterial inoculation site tissue revealed points of near infrared fluorescence, suggesting the presence of ICG-loaded cells. Development of a non-invasive technique to rapidly image inflammatory states without radiation may lead to new tools to distinguish infectious conditions from sterile inflammatory conditions at the bedside. 相似文献
Galectins have emerged as potent immunoregulatory agents that control chronic inflammation through distinct mechanisms. Here, we report that treatment with Galectin-8 (Gal-8), a tandem-repeat member of the galectin family, reduces retinal pathology and prevents photoreceptor cell damage in a murine model of experimental autoimmune uveitis. Gal-8 treatment increased the number of regulatory T cells (Treg) in both the draining lymph node (dLN) and the inflamed retina. Moreover, a greater percentage of Treg cells in the dLN and retina of Gal-8 treated animals expressed the inhibitory coreceptor cytotoxic T lymphocyte antigen (CTLA)-4, the immunosuppressive cytokine IL-10, and the tissue-homing integrin CD103. Treg cells in the retina of Gal-8-treated mice were primarily inducible Treg cells that lack the expression of neuropilin-1. In addition, Gal-8 treatment blunted production of inflammatory cytokines by retinal T helper type (TH) 1 and TH17 cells. The effect of Gal-8 on T cell differentiation and/or function was specific for tissues undergoing an active immune response, as Gal-8 treatment had no effect on T cell populations in the spleen. Given the need for rational therapies for managing human uveitis, Gal-8 emerges as an attractive therapeutic candidate not only for treating retinal autoimmune diseases, but also for other TH1- and TH17-mediated inflammatory disorders. 相似文献
Maternal obesity affects 39.7% of reproductive-age women in the United States. Emerging research has suggested that in utero exposure to maternal obesity is associated with adverse neurodevelopmental outcomes, but knowledge of underlying mechanisms in human samples is lacking. 相似文献
The spectral-based photochemical reflectance index (PRI) and leaf surface temperature (Tleaf) derived from thermal imaging are two indicative metrics of plant functioning. The relationship of PRI with radiation-use efficiency (RUE) and Tleaf with leaf transpiration could be leveraged to monitor crop photosynthesis and water use from space. Yet, it is unclear how such relationships will change under future high carbon dioxide concentrations ([CO2]) and drought. Here we established an [CO2] enrichment experiment in which three wheat genotypes were grown at ambient (400 ppm) and elevated (550 ppm) [CO2] and exposed to well-watered and drought conditions in two glasshouse rooms in two replicates. Leaf transpiration (Tr) and latent heat flux (LE) were derived to assess evaporative cooling, and RUE was calculated from assimilation and radiation measurements on several dates along the season. Simultaneous hyperspectral and thermal images were taken at 1.5 m from the plants to derive PRI and the temperature difference between the leaf and its surrounding air (Tleaf−air). We found significant PRI and RUE and Tleaf−air and Tr correlations, with no significant differences among the genotypes. A PRI–RUE decoupling was observed under drought at ambient [CO2] but not at elevated [CO2], likely due to changes in photorespiration. For a LE range of 350 W m–2, the ΔTleaf−air range was 10°C at ambient [CO2] and only 4°C at elevated [CO2]. Thicker leaves in plants grown at elevated [CO2] suggest higher leaf water content and consequently more efficient thermoregulation at high [CO2] conditions. In general, Tleaf was maintained closer to the ambient temperature at elevated [CO2], even under drought. PRI, RUE, ΔTleaf−air, and Tr decreased linearly with canopy depth, displaying a single PRI-RUE and ΔTleaf−airTr model through the canopy layers. Our study shows the utility of these sensing metrics in detecting wheat responses to future environmental changes. 相似文献
The non-target effects of pesticides, particularly those that are long-lasting and move easily through the environment, could have community-level impacts on beneficial arthropods and hinder conservation efforts in agrolandscapes
We assessed the impacts of a neonicotinoid insecticide, clothianidin, and possible synergisms with a fungicide by quantifying predator, herbivore, and pollinator biomass and morphospecies richness in simulated prairie restorations.
Predator biomass was 66% lower in plots treated with clothianidin compared to controls and this effect persisted across the growing season.
Herbivore biomass was 51% lower in clothianidin-treated plots in June, but the effect waned over the growing season, and no difference was detected in July or August. There was a synergistic effect of clothianidin and fungicide in lowering herbivore morphospecies richness by 12%.
Pollinators appeared unaffected by clothianidin. Instead, pollinator biomass increased by 71% with added fungicide in the absence of clothianidin.
The results of this study underscore the complexity of pesticide effects in field settings. Additional studies are necessary to understand how pesticide dissipation and predator release may interactively affect late-season herbivore populations.
Acute megakaryoblastic leukaemia (AMkL) is a rare subtype of acute myeloid leukaemia (AML) representing 5% of all reported cases, and frequently diagnosed in children with Down syndrome. Patients diagnosed with AMkL have low overall survival and have poor outcome to treatment, thus novel therapies such as CAR T cell therapy could represent an alternative in treating AMkL. We investigated the effect of a new CAR T cell which targets CD41, a specific surface antigen for M7-AMkL, against an in vitro model for AMkL, DAMI Luc2 cell line. The performed flow cytometry evaluation highlighted a percentage of 93.8% CAR T cells eGFP-positive and a limited acute effect on lowering the target cell population. However, the interaction between effector and target (E:T) cells, at a low ratio, lowered the cell membrane integrity, and reduced the M7-AMkL cell population after 24 h of co-culture, while the cytotoxic effect was not significant in groups with higher E:T ratio. Our findings suggest that the anti-CD41 CAR T cells are efficient for a limited time spawn and the cytotoxic effect is visible in all experimental groups with low E:T ratio. 相似文献
Background: Heathlands are relatively abundant in the landscape of the western Mediterranean region, especially in the Strait of Gibraltar region, where it is locally known as herriza. They are associated with a mild Mediterranean climate regime and with acid, nutrient-poor soils. They harbour a high plant diversity, often viewed as a consequence of the transition between European Atlantic heathland and Mediterranean sclerophyllous shrubland floras.
Aims: To determine whether species-rich Mediterranean heathlands, including the herriza, constitute distinct heathland formations rather than transitional vegetation units between Atlantic heathlands and Mediterranean garrigue shrublands.
Methods: We quantified species richness, endemism and analysed the β-diversity of the woody component of Mediterranean heathland communities throughout its geographic range, with special emphasis on the Strait of Gibraltar region.
Results: Mediterranean heathlands, including the herriza, are not transitional communities between Atlantic heathlands and Mediterranean shrublands. Woody species richness and, particularly, endemic richness was the highest in the herriza.
Conclusions: The high biodiversity values of the herriza are a likely consequence of the ecological singularity of the Strait of Gibraltar region and its known role as a glacial refugium. Despite its treeless feature, the herriza deserves special recognition and protection from both in its European and North African extension. 相似文献
EcoHealth - Rodents represent 42% of the world’s mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity... 相似文献