首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   49篇
  国内免费   1篇
  756篇
  2022年   5篇
  2021年   6篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   13篇
  2015年   25篇
  2014年   44篇
  2013年   42篇
  2012年   56篇
  2011年   48篇
  2010年   32篇
  2009年   26篇
  2008年   44篇
  2007年   53篇
  2006年   45篇
  2005年   36篇
  2004年   39篇
  2003年   41篇
  2002年   26篇
  2001年   14篇
  2000年   7篇
  1999年   5篇
  1998年   11篇
  1997年   4篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   11篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   2篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   8篇
  1971年   4篇
  1969年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有756条查询结果,搜索用时 15 毫秒
111.
CD4(+)CD25(+) T regulatory cells (Tregs) play an essential role in maintaining immunologic homeostasis and preventing autoimmunity. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance to nuclear components. We hypothesized that altered function of CD4(+)CD25(high) Tregs might play a role in the breakdown of immunologic self-tolerance in patients with SLE. In this study, we report a significant decrease in the suppressive function of CD4(+)CD25(high) Tregs from peripheral blood of patients with active SLE as compared with normal donors and patients with inactive SLE. Notably, CD4(+)CD25(high) Tregs isolated from patients with active SLE expressed reduced levels of FoxP3 mRNA and protein and poorly suppressed the proliferation and cytokine secretion of CD4(+) effector T cells in vitro. In contrast, the expression of FoxP3 mRNA and protein and in vitro suppression of the proliferation of CD4(+) effector T cells by Tregs isolated from inactive SLE patients, was comparable to that of normal individuals. In vitro activation of CD4(+)CD25(high) Tregs from patients with active SLE increased FoxP3 mRNA and protein expression and restored their suppressive function. These data are the first to demonstrate a reversible defect in CD4(+)CD25(high) Treg function in patients with active SLE, and suggest that strategies to enhance the function of these cells might benefit patients with this autoimmune disease.  相似文献   
112.
Complete sets of cloned protein-encoding open reading frames (ORFs), or ORFeomes, are essential tools for large-scale proteomics and systems biology studies. Here we describe human ORFeome version 3.1 (hORFeome v3.1), currently the largest publicly available resource of full-length human ORFs (available at ). Generated by Gateway recombinational cloning, this collection contains 12,212 ORFs, representing 10,214 human genes, and corresponds to a 51% expansion of the original hORFeome v1.1. An online human ORFeome database, hORFDB, was built and serves as the central repository for all cloned human ORFs (http://horfdb.dfci.harvard.edu). This expansion of the original ORFeome resource greatly increases the potential experimental search space for large-scale proteomics studies, which will lead to the generation of more comprehensive datasets.  相似文献   
113.
The introduction of predator species into new habitats is an increasingly common consequence of human activities, and the persistence of native prey species depends upon their response to these novel predators. In this study, we examined whether the Largespring mosquitofish, Gambusia geiseri exhibited antipredator behavior and/or an elevation of circulating stress hormones (cortisol) to visual and chemical cues from a native predator, a novel predator, or a non‐predatory control fish. Prey showed the most pronounced antipredator response to the native predator treatment, by moving away from the stimulus, while the prey showed no significant changes in their vertical or horizontal position in response to the novel or non‐predator treatments. We also found no significant difference in water‐borne cortisol release rates following any of the treatments. Our results suggest the prey did not recognize and exhibit antipredator behavior to the novel predator, and we infer that this predator species could be detrimental if it expands into the range of this prey species. Further, our study demonstrates prey may not respond to an invasive predator that is phylogenetically, behaviorally, and morphologically dissimilar from the prey species' native predators.  相似文献   
114.
115.
116.
Oregano improves reproductive performance of sows   总被引:1,自引:0,他引:1  
Allan P  Bilkei G 《Theriogenology》2005,63(3):716-721
Natural herbs are being explored as alternatives to antimicrobials. The objective of the present study was to determine the effect of strategic addition of oregano to prefarrowing and lactation diets of sows under field conditions. Alternate farrowing groups were given diets containing 1000 ppm oregano (dried leaf and flower of Origanum vulgare, enriched with 500 g/kg of cold-pressed essential oils of O. vulgare) in prefarrowing and lactation diets. Overall, 801 oregano-treated sows, including 601 primiparous and 1200 multiparous (parity 2.99 +/- 0.43, mean +/- S.E.) and 1809 untreated control sows (705 primiparous and 1104 multiparous; parity 3.04 +/- 0.38), were used. Sows fed oregano had lower annual sow mortality rate (4.02 +/- 0.4% versus 6.92 +/- 1.11%, mean +/- S.E.; P = 0.003), lower sow culling rate during lactation (8.01 +/- 1.11% versus 14.02 +/- 1.33%, P = 0.02), increased farrowing rate (77.02 +/- 2.31% versus 69.91 +/- 2.32%, P = 0.01), increased number of liveborn piglets per litter (10.49 +/- 1.5 versus 9.95 +/- 1.22, P < 0.05), and decreased stillbirth rate (0.909 +/- 0.01 versus 0.807 +/- 0.01, P = 0.05). In addition, multiparous sows fed oregano had higher (P = 0.04) daily voluntary feed intake compared to non-treated sows (7.7 +/- 0.32 kg versus 7.0 +/- 0.42 kg, P = 0.04). Additional studies are needed to elucidate the effects of oregano on the gastrointestinal, immune and urogenital system in swine and to determine if it has any adverse effects.  相似文献   
117.
Fish chromatophores have been shown to be promising biosensors for the detection of hostile agents in the environment. However, state-of-art methods for such applications are still based on extensive use of data/signal processing, in conjunction with need for a skilled human observer to carry out the detection. As a result, conventional methods are complex, costly and cumbersome rendering them useless for field applications requiring low-cost portable solutions capable of fast detection. A new technique is proposed based on the popular scheme of observing the aggregation response in chromatophores for detection of toxicity, and a solution using optical detection and electronic processing is outlined. This scheme has the advantage of being low in cost while providing simple, fast and reliable detection.  相似文献   
118.
During infection, simian virus 40 (SV40) attempts to take hold of the cell, while the host responds with various defense systems, including the ataxia-telangiectasia mutated/ATM-Rad3 related (ATM/ATR)-mediated DNA damage response pathways. Here we show that upon viral infection, ATR directly activates the p53 isoform Δp53, leading to upregulation of the Cdk inhibitor p21 and downregulation of cyclin A-Cdk2/1 (AK) activity, which force the host to stay in the replicative S phase. Moreover, downregulation of AK activity is a prerequisite for the generation of hypophosphorylated, origin-competent DNA polymerase α-primase (hypo-Polα), which is, unlike AK-phosphorylated Polα (P-Polα), recruited by SV40 large T antigen (T-Ag) to initiate viral DNA replication. Prevention of the downregulation of AK activity by inactivation of ATR-Δp53-p21 signaling significantly reduced the T-Ag-interacting hypo-Polα population and, accordingly, SV40 replication efficiency. Moreover, the ATR-Δp53 pathway facilitates the proteasomal degradation of the 180-kDa catalytic subunit of the non-T-Ag-interacting P-Polα, giving rise to T-Ag-interacting hypo-Polα. Thus, the purpose of activating the ATR-Δp53-p21-mediated intra-S checkpoint is to maintain the host in S phase, an optimal environment for SV40 replication, and to modulate the host DNA replicase, which is indispensable for viral amplification.Infection of quiescent CV-1 cells with the primate polyomavirus simian virus 40 (SV40) induces cell cycle progression and stimulates host cell DNA replication, which is mandatory for viral amplification. SV40 uses only a single viral protein, T antigen (T-Ag), for its own replication; all other components have to be provided by the host. Initially, a specifically phosphorylated subclass of T-Ag binds to a palindromic sequence in the SV40 origin (43), and in the presence of ATP, T-Ag forms a double-hexamer nucleoprotein complex leading to structural distortion and unwinding of origin DNA sequences (5). In concert with the cellular single-strand DNA binding protein RPA and topoisomerase I, the DNA helicase activity of T-Ag promotes more-extensive origin unwinding, forming a preinitiation complex (pre-RC), resulting in an initiation complex (53). Once the initiation complex forms, the primase activity of the heterotetrameric DNA polymerase α-primase (Polα) complex, consisting of the p180 catalytic subunit, the p70 regulatory subunit, and the p48/58 primase subunits, synthesizes a short RNA primer on each template strand, which is extended by the DNA polymerase activity of Polα (6, 17). Immediately after the first nascent RNA/DNA primer is synthesized, the complete replication machinery is assembled, and elongation at both forks by the processive DNA polymerase δ ensues (62). Thus, during the initiation of SV40 replication, T-Ag performs many of the functions attributed to the eukaryotic pre-RC complex proteins, including Orc, Cdc6, Cdt1, and kinase-independent cyclin E, which facilitates loading of the putative replication helicase Mcm2-7 onto the eukaryotic origin (4, 18). Biochemical evidence shows that initiation of SV40 and eukaryotic DNA replication occurs by the physical interaction of Polα with the appropriate pre-RC in the immediate vicinity of the origin. In SV40, Polα is loaded onto the origin by direct physical contact between the helicase T-Ag and its p180 N-terminal domain C (14, 15, 16). In eukaryotes, Cdc45, Mcm10, and And-1 cooperate to recruit Polα to the origin-initiation complex, thereby tethering the replicase to the origin-loaded Mcm2-7 helicase (34, 61).Although SV40 and chromosomal DNA replication share the same essential replication factors that are recruited to the appropriate pre-RC, there are noticeable differences between the SV40 and eukaryotic replication systems. The viral system allows unregulated multiple firing of the origin, whereas in the eukaryotic system, origin-dependent initiation of replication is regulated and restricted to firing only once per cell cycle. Reinitiation at origins within a cell cycle is prevented by the inactivation of pre-RC components in S and G2. The cyclin-dependent kinases (Cdks) play a central role in establishing a block to rereplication through phosphorylation of each of the components. At present, several proteins of the mammalian pre-RC, such as Orc1, Cdt1, Cdc6, and the Mcm complex are phosphorylated by cyclin A (cycA)-Cdk2/1 (AK) and, as a result, are degraded or inactivated (1, 26, 30, 33, 40). Nevertheless, not all of the pre-RC components mentioned above are utilized by SV40, and accordingly, not all are involved in viral initiation control. However, in both replication systems, DNA synthesis is initiated by Polα and its initiation activity is regulated by Cdks (55). Moreover, AK-phosphorylated Polα is not recruited to mammalian origins in vivo (13) and is unable to initiate SV40 replication in vitro (47, 57, 58). Considering that cellular mechanisms blocking the rereplication of DNA act by AK phosphorylation of the replication factors mentioned above, especially Polα, it is feasible to suggest that downregulation or even inhibition of this kinase activity promotes dysregulation of replication control in SV40-infected cells.One pathway that leads to downregulation of AK activity in response to cellular stress is the intra-S checkpoint, which employs the novel p53 isoform Δp53 (45). In UV-damaged S-phase cells, ATR (ataxia-telangiectasia mutated [ATM]-Rad3 related)-activated Δp53 upregulates the Cdk inhibitor p21, resulting in a transient reduction in AK activity and decelerated S-phase progression (45). Here we demonstrate that SV40 lytic infection triggers the ATR signaling cascade, leading to the activation of Δp53 and accordingly a p21-mediated drop in AK activity to prevent AK-catalyzed inactivation of the hypophosphorylated, T-Ag-interacting Polα (hypo-Polα) subclass, which is essential for the initiation of viral DNA replication.  相似文献   
119.
Histolysis refers to a widespread disintegration of tissues that is morphologically distinct from apoptosis and often associated with the stimulation of autophagy. Here, we establish that a component of the apoptosome, and pivotal regulator of apoptosis, is also required for histolytic cell death. Using in vivo and ex vivo assays, we demonstrate a global apoptogenic requirement for dark, the fly ortholog of Apaf1, and show that a required focus of dark(-) organismal lethality maps to the central nervous system. We further demonstrate that the Dark protein itself is a caspase substrate and find that alterations of this cleavage site produced the first hypermorphic point mutation within the Apaf1/Ced-4 gene family. In a model of ;autophagic cell death', dark was essential for histolysis but dispensable for characteristic features of the autophagic program, indicating that the induction of autophagy occurs upstream or parallel to histolytic cell death. These results demonstrate that stimulation of autophagy per se is not a ;killing event' and, at the same time, establish that common effector pathways, regulated by the apoptosome, can underlie morphologically distinct forms of programmed cell death.  相似文献   
120.
TGF-beta-inhibited membrane-associated protein, TIMAP, is expressed at high levels in endothelial cells (EC). It is regarded as a member of the MYPT (myosin phosphatase target subunit) family of protein phosphatase 1 (PP1) regulatory subunits; however, its function in EC is not clear. In our pull-down experiments, recombinant TIMAP binds preferentially the beta-isoform of the catalytic subunit of PP1 (PP1cbeta) from pulmonary artery EC. As PP1cbeta, but not PP1calpha, binds with MYPT1 into functional complex, these results suggest that TIMAP is a novel regulatory subunit of myosin phosphatase in EC. TIMAP depletion by small interfering RNA (siRNA) technique attenuates increases in transendothelial electrical resistance induced by EC barrier-protective agents (sphingosine-1-phosphate, ATP) and enhances the effect of barrier-compromising agents (thrombin, nocodazole) demonstrating a barrier-protective role of TIMAP in EC. Immunofluorescent staining revealed colocalization of TIMAP with membrane/cytoskeletal protein, moesin. Moreover, TIMAP coimmunoprecipitates with moesin suggesting the involvement of TIMAP/moesin interaction in TIMAP-mediated EC barrier enhancement. Activation of cAMP/PKA cascade by forskolin, which has a barrier-protective effect against thrombin-induced EC permeability, attenuates thrombin-induced phosphorylation of moesin at the cell periphery of control siRNA-treated EC. On the contrary, in TIMAP-depleted EC, forskolin failed to affect the level of moesin phosphorylation at the cell edges. These results suggest the involvement of TIMAP in PKA-mediated moesin dephosphorylation and the importance of this dephosphorylation in TIMAP-mediated EC barrier protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号