首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27725篇
  免费   2481篇
  国内免费   3501篇
  2024年   65篇
  2023年   288篇
  2022年   584篇
  2021年   897篇
  2020年   771篇
  2019年   898篇
  2018年   930篇
  2017年   836篇
  2016年   1062篇
  2015年   1490篇
  2014年   1816篇
  2013年   1969篇
  2012年   2444篇
  2011年   2124篇
  2010年   1589篇
  2009年   1510篇
  2008年   1813篇
  2007年   1661篇
  2006年   1508篇
  2005年   1385篇
  2004年   1286篇
  2003年   1212篇
  2002年   1045篇
  2001年   765篇
  2000年   625篇
  1999年   532篇
  1998年   341篇
  1997年   287篇
  1996年   236篇
  1995年   215篇
  1994年   185篇
  1993年   141篇
  1992年   171篇
  1991年   127篇
  1990年   119篇
  1989年   115篇
  1988年   74篇
  1987年   83篇
  1986年   62篇
  1985年   42篇
  1984年   40篇
  1983年   53篇
  1982年   32篇
  1981年   29篇
  1980年   20篇
  1979年   27篇
  1978年   30篇
  1977年   23篇
  1976年   19篇
  1970年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Recent studies investigating the evolution of genome size diversity in ferns have shown that they have a distinctive genome profile compared with other land plants. Ferns are typically characterized by possessing medium‐sized genomes, although a few lineages have evolved very large genomes. Ferns are different from other vascular plant lineages as they are the only group to show evidence for a correlation between genome size and chromosome number. In this study, we aim to explore whether the evolution of fern genome sizes is not only shaped by chromosome number changes arising from polyploidy but also by constraints on the average amount of DNA per chromosome. We selected the genus Asplenium L. as a model genus to study the question because of the unique combination of a highly conserved base chromosome number and a high frequency of polyploidy. New genome size data for Asplenium taxa were combined with existing data and analyzed within a phylogenetic framework. Genome size varied substantially between diploid species, resulting in overlapping genome sizes among diploid and tetraploid spleenworts. The observed additive pattern indicates the absence of genome downsizing following polyploidy. The genome size of diploids varied non‐randomly and we found evidence for clade‐specific trends towards larger or smaller genomes. The 578‐fold range of fern genome sizes have arisen not only from repeated cycles of polyploidy but also through clade‐specific constraints governing accumulation and/or elimination of DNA.  相似文献   
992.
Members of the Chenopodiaceae are the most dominant elements in the central Asian desert. The different genera and species within this family are common in desert vegetation types. Should it prove possible to link pollen types in this family to specific desert vegetation, it would be feasible to trace vegetation successions in the geological past. Nevertheless, the morphological similarity of pollen grains in the Chenopodiaceae rarely permits identification at the generic level. Although some pollen classifications of Chenopodiaceae have been proposed, none of them tried to link pollen types to specific desert vegetation types in order to explore their ecological significance. Based on the pollen morphological characters of 13 genera and 24 species within the Chenopodiaceae of eastern central Asia, we provide a new pollen classification of this family with six pollen types and link them to those plant communities dominated by Chenopodiaceae, for example, temperate dwarf semi‐arboreal desert (Haloxylon type), temperate succulent halophytic dwarf semi‐shrubby desert (Suaeda, Kalidium, and Atriplex types), temperate annual graminoid desert (Kalidium type), temperate semi‐shrubby and dwarf semi‐shrubby desert (Kalidium, Iljini, and Haloxylon types), and alpine cushion dwarf semi‐shrubby desert (Krascheninnikovia type). These findings represent a new approach for detecting specific desert vegetation types and deciphering ecosystem evolution in eastern central Asia.  相似文献   
993.
The HUB2 gene encoding histone H2B monoubiquitination E3 ligase is involved in seed dormancy, flowering timing, defence response and salt stress regulation in Arabidopsis thaliana. In this study, we used the cauliflower mosaic virus (CaMV) 35S promoter to drive AtHUB2 overexpression in cotton and found that it can significantly improve the agricultural traits of transgenic cotton plants under drought stress conditions, including increasing the fruit branch number, boll number, and boll‐setting rate and decreasing the boll abscission rate. In addition, survival and soluble sugar, proline and leaf relative water contents were increased in transgenic cotton plants after drought stress treatment. In contrast, RNAi knockdown of GhHUB2 genes reduced the drought resistance of transgenic cotton plants. AtHUB2 overexpression increased the global H2B monoubiquitination (H2Bub1) level through a direct interaction with GhH2B1 and up‐regulated the expression of drought‐related genes in transgenic cotton plants. Furthermore, we found a significant increase in H3K4me3 at the DREB locus in transgenic cotton, although no change in H3K4me3 was identified at the global level. These results demonstrated that AtHUB2 overexpression changed H2Bub1 and H3K4me3 levels at the GhDREB chromatin locus, leading the GhDREB gene to respond quickly to drought stress to improve transgenic cotton drought resistance, but had no influence on transgenic cotton development under normal growth conditions. Our findings also provide a useful route for breeding drought‐resistant transgenic plants.  相似文献   
994.
Grain number is an important agronomic trait. We investigated the roles of chromatin interacting factor Oryza sativa VIN3‐LIKE 2 (OsVIL2), which controls plant biomass and yield in rice. Mutations in OsVIL2 led to shorter plants and fewer grains whereas its overexpression (OX) enhanced biomass production and grain numbers when compared with the wild type. RNA‐sequencing analyses revealed that 1958 genes were up‐regulated and 2096 genes were down‐regulated in the region of active division within the first internodes of OX plants. Chromatin immunoprecipitation analysis showed that, among the downregulated genes, OsVIL2 was directly associated with chromatins in the promoter region of CYTOKININ OXIDASE/DEHYDROGENASE2 (OsCKX2), a gene responsible for cytokinin degradation. Likewise, active cytokinin levels were increased in the OX plants. We conclude that OsVIL2 improves the production of biomass and grain by suppressing OsCKX2 chromatin.  相似文献   
995.
MicroRNA393 (miR393) has been implicated in plant growth, development and multiple stress responses in annual species such as Arabidopsis and rice. However, the role of miR393 in perennial grasses remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is an environmentally and economically important C3 cool‐season perennial turfgrass. Understanding how miR393 functions in this representative turf species would allow the development of novel strategies in genetically engineering grass species for improved abiotic stress tolerance. We have generated and characterized transgenic creeping bentgrass plants overexpressing rice pri‐miR393a (Osa‐miR393a). We found that Osa‐miR393a transgenics had fewer, but longer tillers, enhanced drought stress tolerance associated with reduced stomata density and denser cuticles, improved salt stress tolerance associated with increased uptake of potassium and enhanced heat stress tolerance associated with induced expression of small heat‐shock protein in comparison with wild‐type controls. We also identified two targets of miR393, AsAFB2 and AsTIR1, whose expression is repressed in transgenics. Taken together, our results revealed the distinctive roles of miR393/target module in plant development and stress responses between creeping bentgrass and other annual species, suggesting that miR393 would be a promising candidate for generating superior crop cultivars with enhanced multiple stress tolerance, thus contributing to agricultural productivity.  相似文献   
996.
Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive‐stranded RNAs. Here, we have established a BNYVV full‐length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV‐based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co‐localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV‐based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV‐based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.  相似文献   
997.
998.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   
999.
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.  相似文献   
1000.
Aging is an independent risk factor for vascular diseases. Perivascular adipose tissue (PVAT), an active component of the vasculature, contributes to vascular dysfunction during aging. Identification of underlying cell types and their changes during aging may provide meaningful insights regarding the clinical relevance of aging‐related vascular diseases. Here, we take advantage of single‐cell RNA sequence to characterize the resident stromal cells in the PVAT (PVASCs) and identified different clusters between young and aged PVASCs. Bioinformatics analysis revealed decreased endothelial and brown adipogenic differentiation capacities of PVASCs during aging, which contributed to neointimal hyperplasia after perivascular delivery to ligated carotid arteries. Mechanistically, in vitro and in vivo studies both suggested that aging‐induced loss of peroxisome proliferator‐activated receptor‐γ coactivator‐1 α (PGC1α) was a key regulator of decreased brown adipogenic differentiation in senescent PVASCs. We further demonstrated the existence of human PVASCs (hPVASCs) and overexpression of PGC1α improved hPVASC delivery‐induced vascular remodeling. Our finding emphasizes that differentiation capacities of PVASCs alter during aging and loss of PGC1α in aged PVASCs contributes to vascular remodeling via decreased brown adipogenic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号