首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   20篇
  290篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   10篇
  2014年   16篇
  2013年   20篇
  2012年   18篇
  2011年   18篇
  2010年   18篇
  2009年   9篇
  2008年   12篇
  2007年   11篇
  2006年   18篇
  2005年   10篇
  2004年   10篇
  2003年   4篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1922年   1篇
排序方式: 共有290条查询结果,搜索用时 9 毫秒
151.
All materials enter or exit the cell nucleus through nuclear pore complexes (NPCs), efficient transport devices that combine high selectivity and throughput. NPC-associated proteins containing phenylalanine–glycine repeats (FG nups) have large, flexible, unstructured proteinaceous regions, and line the NPC. A central feature of NPC-mediated transport is the binding of cargo-carrying soluble transport factors to the unstructured regions of FG nups. Here, we model the dynamics of nucleocytoplasmic transport as diffusion in an effective potential resulting from the interaction of the transport factors with the flexible FG nups, using a minimal number of assumptions consistent with the most well-established structural and functional properties of NPC transport. We discuss how specific binding of transport factors to the FG nups facilitates transport, and how this binding and competition between transport factors and other macromolecules for binding sites and space inside the NPC accounts for the high selectivity of transport. We also account for why transport is relatively insensitive to changes in the number and distribution of FG nups in the NPC, providing an explanation for recent experiments where up to half the total mass of the FG nups has been deleted without abolishing transport. Our results suggest strategies for the creation of artificial nanomolecular sorting devices.  相似文献   
152.
Conservation of identified germplasm is an important component forefficient and effective management of plant genetic resources. Traditionally,species identification has relied on morphological characters like growth habit,floral morphology like flower colour, and agronomic characteristics of the plant.Dalbergia species are important wind-dispersed tropicaltimber trees which exhibit high intrafruit seed abortion because of intensesibling competition for maternal resources. Studies were undertaken foridentification and genetic relationships in five species ofDalbergia and to evaluate genetic diversity withinpopulations of Dalbergia sisso, D.latifolia, D. paniculata, D.assamica and D. spinosa by using randomamplified polymorphic DNAs (RAPD) markers. Analysis was started by using 30decamer primers that allowed to distinguish five species and to select a reducedset of primers. The selected primers were used for identification and forestablishing a profiling system to estimate genetic relationships and toevaluate the genetic variability among the individuals in a population ofDalbergia species. A total of 120 distinct DNA fragments(bands), ranging from 0.3 to 4.0 kb, were amplified byusing nine selected random decamer primers. The genetic similarity was evaluated onthe basis of presence or absence of bands, which revealed a wide range ofvariability within the species. The cluster analysis indicated that five speciesof Dalbergia formed two major clusters. The first clusterconsisted of D. spinosa, D. latifolia and D.sisso. The second cluster was represented by two species, i.e.D. paniculata and D. assamica.A maximum similarity of 60% was observed in D. paniculata andD. assamica and they formed a minor cluster.Dalbergia latifolia and D. sissoformed another minor cluster with more than 50% similarity. Dalbergiaspinosa shared up to 40% similarity with D.latifolia and D. sisso. All the species sharemore than 20% similarity among themselves. The closest genetic distance existedwithin populations of different Dalbergia species. Thus,these RAPD markers have the potential for conservation of identified clones andcharacterization of genetic relatedness among the species. This is also helpful intree breeding programs and provides an important input into conservation biology.  相似文献   
153.
Phytophthora ramorum is an oomycete plant pathogen classified in the kingdom Stramenopila. P. ramorum is the causal agent of sudden oak death on coast live oak and tanoak as well as ramorum blight on woody ornamental and forest understorey plants. It causes stem cankers on trees, and leaf blight or stem dieback on ornamentals and understorey forest species. This pathogen is managed in the USA and Europe by eradication where feasible, by containment elsewhere and by quarantine in many parts of the world. Genomic resources provide information on genes of interest to disease management and have improved tremendously since sequencing the genome in 2004. This review provides a current overview of the pathogenicity, population genetics, evolution and genomics of P. ramorum. Taxonomy: Phytophthora ramorum (Werres, De Cock & Man in't Veld): kingdom Stramenopila; phylum Oomycota; class Peronosporomycetidae; order Pythiales; family Pythiaceae; genus Phytophthora. Host range: The host range is very large and the list of known hosts continues to expand at the time of writing. Coast live oak and tanoak are ecologically, economically and culturally important forest hosts in the USA. Rhododendron, Viburnum, Pieris, Syringa and Camellia are key ornamental hosts on which P. ramorum has been found repeatedly, some of which have been involved in moving the pathogen via nursery shipments. Disease symptoms: P. ramorum causes two different diseases with differing symptoms: sudden oak death (bleeding lesions, stem cankers) on oaks and ramorum blight (twig dieback and/or foliar lesions) on tree and woody ornamental hosts. Useful websites: http://nature.berkeley.edu/comtf/ , http://rapra.csl.gov.uk/ , http://www.aphis.usda.gov/plant_health/plant_pest_info/pram/index.shtml , http://genome.jgi‐psf.org/Phyra1_1/Phyra1_1.home.html , http://pamgo.vbi.vt.edu/ , http://pmgn.vbi.vt.edu/ , http://vmd.vbi.vt.edu./ , http://web.science.oregonstate.edu/bpp/labs/grunwald/resources.htm , http://www.defra.gov.uk/planth/pramorum.htm , http://www.invasive.org/browse/subject.cfm?sub=4603 , http://www.forestry.gov.uk/forestry/WCAS‐4Z5JLL  相似文献   
154.
The structure of two polysaccharides isolated from the hot aqueous extract of fruiting bodies of the mushroom, Termitomyces eurhizus, have been reinvestigated. These consist of two homogeneous fractions PS-I and PS-II. PS-I contains only D-glucose as the monosaccharide constituent. From methylation analysis and periodate oxidation studies, followed by GLC-MS analysis the linkages, the sugar units in PS-I were identified as (1-->3)-D-Glcp and (1-->6)-D-Glcp. PS-II contains D-glucose, and the mode of linkage of d-glucose was identified as (1-->6)-D-Glcp. Finally, the following possible structures of the polysaccharides were assigned using 1H, 2D-COSY, TOCSY, NOESY and 13C NMR spectral analysis: [carbohydrate structure: see text].  相似文献   
155.
A successful procedure was established for in vitro plant regeneration from callus derived from stem and leaf explants of Centella asiatica on semisolid modified Murashige and Skoog's [7] medium supplemented with 2.0 mg L3 kinetin and 4.0 mg L3 a-naphthaleneacetic acid. The rate of shoot-bud regeneration was the highest (42.8 and 54.3 shoots/culture in stem and leaf derived callus respectively) after 4 weeks of subculture on 4.0 mg L3 6-benzyladenine, 2.0 mg L3 Kn, 0.25 mg L3 a-naphthaleneacetic acid and 20 mg L3 adenine sulfate. Differentiated shoots rooted within 11 days in 1/2 strength MS basal salts supplemented with 0.5 mg L3 indole-3-acetic acid and 2% (w/v) sucrose. About 85% of rooted plantlets were acclimatized and transferred to the greenhouse.  相似文献   
156.
Exotic plants invading new habitats frequently initiate broad changes in ecosystem functioning. Sorghum halepense is an invasive grass capable of growing in nitrogen (N)-poor tallgrass prairie soils that creates near monocultures in once phylogenetically diverse-communities. The biogeochemistry of soils invaded by S. halepense was compared to that of un-invaded native prairie soils. Invaded soils contained two to four times greater concentrations of alkaline metals, micronutrients, and essential plant nutrients than native prairie soils. The notable exception was Ca+2, which was always significantly lower in invaded soils. The N-content of S. halepense above-ground biomass was 6.4 mg g?1 (320 mg N plant?1) and suggested a supplemental N source supporting plant growth. Altered soil biogeochemistry in invaded areas coupled with high above-ground biomass in N-poor soils suggested N2-fixing activity associated with S. halepense. Nitrogenase activity of plant tissues indicated that N2-fixation was occurring in, and largely restricted to, S. halepense rhizomes and roots. A culture approach was used to isolate these N2-fixing bacteria from plant tissues, and 16S rRNA gene sequencing was used to identify these bacterial isolates. Nitrogenase activity of bacterial isolates indicated several were capable of N2-fixation. In addition to N2-fixation, other roles involved in promoting plant growth, namely mobilizing phosphorus and iron chelation, are known for closest matching relatives of the bacterial isolates identified in this work. Our results indicate that these plant growth-promoting bacteria may enhance the ability of S. halepense to invade and persist by altering fundamental ecosystem properties via significant changes in soil biogeochemistry.  相似文献   
157.
158.
Aitchison JD  Rout MP 《Genetics》2012,190(3):855-883
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell's genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or "Nups"), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC's role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins.  相似文献   
159.
Mutations of the myelin proteolipid protein gene (Plp) are associated with excessive programmed cell death (PCD) of oligodendrocytes. We show for the first time that PLP is a molecule ubiquitously expressed in non-neural tissues during normal development, and that the level of native PLP modulates the level of PCD. We analyze three non-neural tissues, and show that native PLP is expressed in trophoblasts, spermatogonia, and cells of interdigital webbing. The non-neural cells that express high levels of native PLP also undergo PCD. The level of PLP expression modulates the level of PCD because mice that overexpress native PLP have increased PCD and mice deficient in PLP have decreased PCD. We show that overexpression of native PLP causes a dramatic acidification of extracellular fluid that, in turn, causes increased PCD. These studies show that the level of native PLP modulates the amount of PCD during normal development via a pH-dependent mechanism.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号