首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   36篇
  2021年   2篇
  2020年   7篇
  2019年   7篇
  2018年   9篇
  2017年   5篇
  2016年   10篇
  2015年   12篇
  2014年   17篇
  2013年   20篇
  2012年   33篇
  2011年   19篇
  2010年   13篇
  2009年   11篇
  2008年   19篇
  2007年   12篇
  2006年   19篇
  2005年   17篇
  2004年   13篇
  2003年   10篇
  2002年   11篇
  2001年   16篇
  2000年   9篇
  1999年   12篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1976年   3篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1969年   6篇
  1968年   1篇
  1967年   6篇
  1966年   2篇
  1965年   2篇
排序方式: 共有423条查询结果,搜索用时 15 毫秒
81.
Studies of the Phycodnaviridae have traditionally relied on the DNA polymerase (pol) gene as a biomarker. However, recent investigations have suggested that the major capsid protein (MCP) gene may be a reliable phylogenetic biomarker. We used MCP gene amplicons gathered across the North Atlantic to assess the diversity of Emiliania huxleyi-infecting Phycodnaviridae. Nucleotide sequences were examined across >6000 km of open ocean, with comparisons between concentrates of the virus-size fraction of seawater and of lysates generated by exposing host strains to these same virus concentrates. Analyses revealed that many sequences were only sampled once, while several were over-represented. Analyses also revealed nucleotide sequences distinct from previous coastal isolates. Examination of lysed cultures revealed a new richness in phylogeny, as MCP sequences previously unrepresented within the existing collection of E. huxleyi viruses (EhV) were associated with viruses lysing cultures. Sequences were compared with previously described EhV MCP sequences from the North Sea and a Norwegian Fjord, as well as from the Gulf of Maine. Principal component analysis indicates that location-specific distinctions exist despite the presence of sequences common across these environments. Overall, this investigation provides new sequence data and an assessment on the use of the MCP gene.  相似文献   
82.
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease.  相似文献   
83.

Background

Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.

Results

Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.

Conclusions

High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users.  相似文献   
84.

Background

Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms.

Methodology

Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers.

Principal findings

We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species.

Conclusions

The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.  相似文献   
85.
The present study was conducted to identify the genetic factors controlling somatic embryogenesis in the sunflower. Two traits, the number of embryogenic explants per 40 explants plated (EE/40 E) and the number of embryos per 40 explants (E/40 E), were scored in 74 recombinant inbred lines (RILs) from a cross between ’PAC-2’ and ’RHA-266’. The experiment was designed as a randomized complete block with 76 genotypes (74 recombinant inbred lines and two parents) and three replications. Each replication consisted of three Erlenmeyer flasks with 40 epidermal layers (explants). Analyses of variance indicated the existence of highly significant differences among parental genotypes and their RILs. Heritabilities for the somatic embryogenesis traits studied, EE/40 E and E/40 E, were high (0.64 and 0.77 respectively) and the genetic gain, in percentage of the best parent for 10% of selected RILs, was significant. Four QTLs for EE/40 E (tee) and seven for E/40 E (ete) were detected using composite interval mapping and AFLP mapping. The QTLs for EE/40 E explained 48% of the phenotypic variation while the QTLs for E/40 E explained about 89% of the variation. Received:14 December 1999 / Accepted:18 May 2000  相似文献   
86.
87.
Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGFβ family member was performed. A maximum likelihood phylogenetic tree of several TGFβ/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGFß family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in women.  相似文献   
88.
We have used mouse monoclonal antibodies to different determinants on rat class I major histocompatibility complex (MHC) antgiens in order to identify water-soluble and membrane-bound nonclassical (i.e., non-RT1.A) class I MHC antigens on the spongiotrophoblast and labyrinthine trophoblast of rat placenta. Initial immunohistological studies with monoclonal antibodies reacting with determinant restricted to classical (RT1.A) rat class I antigens confirmed the presence of these antigens on spongiothrophoblast, but not on labyrinthine trphoblast. Staining with another monoclonal antibody, which reacts with both classical and at least some nonclassical rat class I antigens, gave strong staining of both the labyrinthine and spongiotrophoblast. To distinguish membrane-bound from water-soluble class I molecules, quantitative adsorption analyses were carried out using both placental cell membranes and ultracentrifuged aqueous extracts of placenta. The aqueous placental extract had no absorptive capacity for the RT1.A-specific antibodies, but it had very strong absorptive capacity for the more broadly reactive antibody. This strongly suggests the presence of large quantities of a soluble nonclassical class I MHC antigen in rat placenta. The placental cell membranes had four to fivefold greater absorptive capacity for the broadly reactive antibody when compared to the antibodies to classical class I antigens, a result that was consistent with the presence of membrane-bound non-classical class I antigens on rat placenta. The membrane-bound nonclassical class I antigen was purified from detergent extracts of DA rat placental membranes using monoclonal antibody affinity and lentil lectin affinity chromatography. The putative nonclassical class I antigen had a heavy chain of M r 43 000, which is 2000 smaller than the amino acid sequence analysis demonstrated that the nonclassical placental antigen differed at three amino acid residues from the classical RT1.A class I molecule and also from the Q10-like class I molecule of the DA strain. It differed also from the pAR 1.5 cDNA sequence, the only full-length rat class I DNA sequence available so far. Address correspondence and offprint requests to: J. Fabre.  相似文献   
89.
The alkaline extracellular protease (AEP) of the yeast Yarrowia lipolytica is synthesized as a preproprotein. The precursor undergoes a complex maturation during its intracellular transit, successively involving signal peptide cleavage, dipeptidyl aminopeptidase processing, and cleavage at a dibasic site which results in the extracellular release of the active enzyme. It was previously shown that various deletions within the proregion affect the intracellular transit of the protease. Prodeleted precursors are translocated and have their signal sequences removed, but they accumulate in the secretion apparatus. We show here that the secretion of partially active proteins is restored when the prodomain is supplied in trans as an independent peptide. The secretion rescue and maturation processing that are reconstituted by the free propeptide do not reach wild type efficiency. The results of pulse-chase experiments indicate that a rate-limiting step occurs during the intracellular transit of the rescued precursors, before Kex2p proteolytic cleavage. This delayed maturation seems to be responsible for an overall slower release of the rescued polypeptides. Propeptide and AEP were secreted in equimolar amounts by both wild type and trans-complemented strains, but none could be detected in the supernatant when expressed alone. These experiments suggest that the prodomain of AEP initially acts as a crucial folding aid for the early secretory transit of the translocated precursor. They further suggest that the prodomain is also required for a second structural change of the AEP precursor during its activation.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号