首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3314篇
  免费   168篇
  国内免费   1篇
  2022年   10篇
  2021年   34篇
  2020年   19篇
  2019年   26篇
  2018年   46篇
  2017年   39篇
  2016年   72篇
  2015年   109篇
  2014年   105篇
  2013年   392篇
  2012年   211篇
  2011年   219篇
  2010年   130篇
  2009年   136篇
  2008年   231篇
  2007年   220篇
  2006年   243篇
  2005年   195篇
  2004年   181篇
  2003年   197篇
  2002年   185篇
  2001年   29篇
  2000年   22篇
  1999年   26篇
  1998年   40篇
  1997年   36篇
  1996年   34篇
  1995年   39篇
  1994年   26篇
  1993年   24篇
  1992年   11篇
  1991年   19篇
  1990年   14篇
  1989年   13篇
  1988年   9篇
  1986年   5篇
  1985年   5篇
  1984年   12篇
  1983年   5篇
  1982年   13篇
  1981年   16篇
  1980年   7篇
  1979年   11篇
  1978年   11篇
  1977年   5篇
  1976年   10篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
  1970年   4篇
排序方式: 共有3483条查询结果,搜索用时 859 毫秒
81.
82.
Strigolactones (SLs) are essential host recognition signals for both root parasitic plants and arbuscular mycorrhizal fungi, and SLs or their metabolites function as a novel class of plant hormones regulating shoot and root architecture. Our previous study indicated that nitrogen (N) deficiency as well as phosphorus (P) deficiency in sorghum enhanced root content and exudation of 5-deoxystrigol, one of the major SLs produced by sorghum. In the present study, we examined how N and P fertilization affects SL production and exudation in sorghum plants subjected to short- (5 days) or long-term (10 days) N or P deficiency and demonstrated their common and distinct features. The root contents and exudation of SLs in the N- or P-deficient sorghum plants grown for 6, 12 or 24 h with or without N or P fertilization were quantified by LC–MS/MS. In general, without fertilization, root contents and exudation of SLs stayed at similar levels at 6 and 12 h and then significantly increased at 24 h. The production of SLs responded more quickly to P fertilization than the secretion of SLs, while regulation of SL secretion began earlier after N fertilization. It is suggested that sorghum plants regulate SL production and exudation when they are subjected to nutrient deficiencies depending on the type of nutrient and degree of deficiency.  相似文献   
83.
How is massive conformational change in integrins achieved on a rapid timescale? We report crystal structures of a metastable, putative transition state of integrin αXβ2. The αXβ2 ectodomain is bent; however, a lattice contact stabilizes its ligand-binding αI domain in a high affinity, open conformation. Much of the αI α7 helix unwinds, loses contact with the αI domain, and reshapes to form an internal ligand that binds to the interface between the β propeller and βI domains. Lift-off of the αI domain above this platform enables a range of extensional and rotational motions without precedent in allosteric machines. Movements of secondary structure elements in the β2 βI domain occur in an order different than in β3 integrins, showing that integrin β subunits can be specialized to assume different intermediate states between closed and open. Mutations demonstrate that the structure trapped here is metastable and can enable rapid equilibration between bent and extended-open integrin conformations and up-regulation of leukocyte adhesiveness.  相似文献   
84.
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.  相似文献   
85.
A NADPH-dependent (S)-imine reductase (SIR) was purified to be homogeneous from the cell-free extract of Streptomyces sp. GF3546. SIR appeared to be a homodimer protein with subunits of 30.5 kDa based on SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It also catalyzed the (S)-enantioselective reduction of not only 2-methyl-1-pyrroline (2-MPN) but also 1-methyl-3,4-dihydroisoquinoline and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline. Specific activities for their imines were 130, 44, and 2.6 nmol?min?1?mg?1, and their optical purities were 92.7 % ee, 96.4 % ee, and >99 % ee, respectively. Using a NADPH-regenerating system, 10 mM 2-MPN was converted to amine with 100 % conversion and 92 % ee after 24 h. The amino acid sequence analysis revealed that SIR showed about 60 % identity to 6-phosphogluconate dehydrogenase. However, it showed only 37 % identity with Streptomyces sp. GF3587 (R)-imine reductase. Expression of SIR in Escherichia coli was achieved, and specific activity of the cell-free extract was about two times higher than that of the cell-free extract of Streptomyces sp. GF3546.  相似文献   
86.
87.
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs.  相似文献   
88.
The Drosophila sponge (spg)/CG31048 gene belongs to the dedicator of cytokinesis (DOCK) family genes that are conserved in a wide variety of species. DOCK family members are known as DOCK1–DOCK11 in mammals. Although DOCK1 and DOCK2 involve neurite elongation and immunocyte differentiation, respectively, the functions of other DOCK family members are not fully understood. Spg is a Drosophila homolog of mammalian DOCK3 and DOCK4. Specific knockdown of spg by the GMR-GAL4 driver in eye imaginal discs induced abnormal eye morphology in adults. To mark the photoreceptor cells in eye imaginal discs, we used a set of enhancer trap strains that express lacZ in various sets of photoreceptor cells. Immunostaining with anti-Spg antibodies and anti-lacZ antibodies revealed that Spg is localized mainly in R7 photoreceptor cells. Knockdown of spg by the GMR-GAL4 driver reduced signals of R7 photoreceptor cells, suggesting involvement of Spg in R7 cell differentiation. Furthermore, immunostaining with anti-dpERK antibodies showed the level of activated ERK signal was reduced extensively by knockdown of spg in eye discs, and both the defects in eye morphology and dpERK signals were rescued by over-expression of the Drosophila raf gene, a component of the ERK signaling pathway. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rap1 in and around the plasma membrane of the eye disc cells. Together, these results indicate Spg positively regulates the ERK pathway that is required for R7 photoreceptor cell differentiation and the regulation is mediated by interaction with Rap1 during development of the compound eye.  相似文献   
89.
Gene therapy is expected to treat various incurable diseases including viral infections, autoimmune disorders, and cancers. Cationic lipids (CL) have been used as carriers of therapeutic DNAs for gene therapy because they can form a complex with DNA and such a complex can be incorporated into cells and transport the bound DNA to cytosol. The CL/DNA complexes are called lipoplexes and categorized as a non-viral vector. Lipoplexes are often prepared by adding a neutral phospholipid dioleoylphosphatidylethanolamine (DOPE) to CL in order to enhance transfection. However, the role of DOPE is not fully understood. We synthesized a new CL having an ethylenediamine cationic head group, denoted by DA, and found that addition of DOPE to DA achieved a good efficiency, almost in the similar level of commonly used transfection reagent Lipofectamine 2000 (Invitrogen). The composition of DA:DOPE = 1:1 showed the highest efficiency. This lipoplex showed structural transition when pH was changed from 7 to 4, corresponding pH lowering in late endosome, while DOPE itself showed structural transition at more basic pH around 8. The present data showed that the DOPE/DA composition determines the structural transition pH and choosing a suitable pH, i.e., a suitable composition, is essential to increase the transfection efficiency.  相似文献   
90.
Hypoglycosylation is a common characteristic of dystroglycanopathy, which is a group of congenital muscular dystrophies. More than ten genes have been implicated in α-dystroglycanopathies that are associated with the defect in the O-mannosylation pathway. One such gene is GTDC2, which was recently reported to encode O-mannose β-1,4-N-acetylglucosaminyltransferase. Here we show that GTDC2 generates CTD110.6 antibody-reactive N-acetylglucosamine (GlcNAc) epitopes on the O-mannosylated α-dystroglycan (α-DG). Using the antibody, we show that mutations of GTDC2 identified in Walker–Warburg syndrome and alanine-substitution of conserved residues between GTDC2 and EGF domain O-GlcNAc transferase resulted in decreased glycosylation. Moreover, GTDC2-modified GlcNAc epitopes are localized in the endoplasmic reticulum (ER). These data suggested that GTDC2 is a novel glycosyltransferase catalyzing GlcNAcylation of O-mannosylated α-DG in the ER. CTD110.6 antibody may be useful to detect a specific form of GlcNAcylated O-mannose and to analyze defective O-glycosylation in α-dystroglycanopathies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号