首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3314篇
  免费   168篇
  国内免费   1篇
  2022年   10篇
  2021年   34篇
  2020年   19篇
  2019年   26篇
  2018年   46篇
  2017年   39篇
  2016年   72篇
  2015年   109篇
  2014年   105篇
  2013年   392篇
  2012年   211篇
  2011年   219篇
  2010年   130篇
  2009年   136篇
  2008年   231篇
  2007年   220篇
  2006年   243篇
  2005年   195篇
  2004年   181篇
  2003年   197篇
  2002年   185篇
  2001年   29篇
  2000年   22篇
  1999年   26篇
  1998年   40篇
  1997年   36篇
  1996年   34篇
  1995年   39篇
  1994年   26篇
  1993年   24篇
  1992年   11篇
  1991年   19篇
  1990年   14篇
  1989年   13篇
  1988年   9篇
  1986年   5篇
  1985年   5篇
  1984年   12篇
  1983年   5篇
  1982年   13篇
  1981年   16篇
  1980年   7篇
  1979年   11篇
  1978年   11篇
  1977年   5篇
  1976年   10篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
  1970年   4篇
排序方式: 共有3483条查询结果,搜索用时 328 毫秒
41.
Flowering of Pharbitis nil strain Violet is induced in continuouslight under poor nutritional conditions. High-performance liquidchromatography of extracts of the cotyledons revealed that twocompounds in addition to chlorogenic acid accumulate under suchconditions. The compounds were identified as pinoresinol glucosideand p-coumaroylquinic acid. The endogenous levels of these phenylpropanoidswere correlated with the flowering response when nutrition waspoor. However, activation of phenylpropanoid biosynthesis seemednot to be essential for the induction of flowering. (Received May 17, 1993; Accepted July 26, 1993)  相似文献   
42.
Using the polymerase chain reaction (PCR) to examine the occurrence ofbcl-2/JH joining produced by t(14;18) chromosomal translocation, amplified DNA was detected in 2 of 18 lymph nodes showing reactive lymphadenopathy. The PCR was repeated in these two lymphs nodes using the same DNA samples, but no amplification was detected at the second attempt. Thus the amplified DNA was considered to be derived from one copy of joinedbcl-2/JH in one cell, or from a few copies in a few clonal cells with the same joinedbcl-2/JH. These results suggest that false joining ofbcl-2/JH at the t(14;l8) junction may occur in reactive lymph nodes.  相似文献   
43.
44.
Some frog species have a unique skeletal element, referred to as the intercalary element (IE), in the joints between the terminal and subterminal phalanges of all digits. IEs are composed of cartilage or connective tissue and have a markedly differ shape than the phalanges. IEs are highly related to the arboreal lifestyle and toe pads. The IE is found only in neobatrachian frogs among anurans, suggesting that it is a novelty of Neobatrachia. IEs are widely distributed among multiple neobatrachian lineages and are found in the suborders Hyloides and Ranoides (the two major clades in Neobatrachia). However, it is unclear whether the IEs found in multiple linages resulted from convergent evolution. Therefore, in this study, we aimed to examine how similar or different the developmental trajectories of the IEs are between Hyloides and Ranoides. To that end, we compared the osteological and histological developmental processes of the IEs of the hyloid frog Dryophytes japonicus and the ranoid frog Zhangixalus schlegelii. Both species shared the same IE-initiation site and level of tissue differentiation around the IE when it began to form in tadpoles, although the IE developments initiated at different stages which were determined by external criteria. These results suggest that similar mechanisms drive IE formation in the digits of both species, supporting the hypothesis that the IEs did not evolve convergently.  相似文献   
45.
To determine the glycoforms of squid rhodopsin, N-glycans were released by glycoamidase A digestion, reductively aminated with 2-aminopyridine, and then subjected to 2D HPLC analysis [Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y. & Tomiya, N. (1995) Anal. Biochem.226, 139-146]. The major glycans of squid rhodopsin were shown to possess the alpha1-3 and alpha1-6 difucosylated innermost GlcNAc residue found in glycoproteins produced by insects and helminths. By combined use of 2D HPLC, electrospray ionization-mass spectrometry and permethylation and gas chromatography-electron ionization mass spectrometry analyses, it was revealed that most (85%) of the N-glycans exhibit the novel structure Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4(Galbeta1-4Fucalpha1-6)(Fucalpha1-3)GlcNAc.  相似文献   
46.
A new gobiid species,Acanthogobius insularis, is described from 88 specimens collected from Amami-oshima Island and Okinawa Island, Ryukyu Islands, southern Japan. The species is distinguished from its congeners by the combination of dorsal and anal fin ray counts, vertebral counts, cephalic sensory system patterns and coloration.  相似文献   
47.
Summary Two transmembrane serine-threonine kinases (type I and II receptors), a membrane-anchored proteoglycan (type III), and a homodimeric ligand participate in the transforming growth factor beta type on (TGFβ1) signal transduction complex. The expression of recombinant receptors in insect cells co-infected with up to three recombinant baculoviruses was employed to study interactions among the ectodomains of the three types of receptors and the TGFβ1 ligand in absence of uncontrollable extrinsic factors in mammalian cells. Multi-subunit complexes were assembled in intact cells and purified on glutathione-conjugated beads for analysis by tagging one of the subunits with glutathione S-transferase (GST). Intrinsic ligand-independent interactions were observed among receptor subunits as follows: type III–III type I–I, type III-I, and type II-I. The homeotypic complex of type II–II receptors and the heterotypic type III-II interaction was ligand dependent. The type I, but not the type III, subunit displaced about 50% of the type II component in either ligand-dependent homomeric type II-type II complexes or heteromeric type III-type II complexes to form type II-I or type III-II-I oligomers, respectively. The type II subunit displaced type I subunits in oligomers of the type I subunit. Specificity of type I receptors may result from differential affinity for the type II receptor rather than specificity for ligand. A monomeric subunit of the TGFβ1 ligand bound concurrently to type III and type II or type III and type I receptors, but failed to concurrently bind to the type II and type I subunits. The binding of TGFβ1 to the type I kinase subunit appears to require an intact disulfide-linked ligand dimer in the absence of a type III subunit. The combined results suggest a pentameric TGFβ signal transduction complex in which one unit each of the type III, type II, and type I components is assembled around the two subunits of the dimeric TGFβ1 ligand. An immobilized GST-tagged subunit of the receptor complex was utilized to assemble multi-subunit complexesin vitro and to study the phosphorylation events among subunits in the absence of extrinsic cell-derived kinases. The results revealed that (a) a low level of ligand-independent autophosphorylation occurs in the type I kinase; (b) a high level of autophosphorylation occurs in the type II kinase; (c) both the type III and type I subunits aretrans-phosphorylated by the type II subunit; and (d) the presence of both type I and II kinases complexed with the type III subunit and dimeric TGFβ1 ligand in a pentameric complex causes maximum phosphorylation of all three receptor subunits.  相似文献   
48.
49.
Nucleotide sequences for the -casein precursor proteins have been determined from the genomic DNAs or hair roots of the Ruminantia. The coding regions, exons 2, 3, and 4, were amplified separately via the three kinds of PCRs and then directly sequenced. The primers were designed from the sequence of bovine -casein gene; they were applicable for the amplification of the -casein genes from the 13 species in the Ruminantia except exon 2 of the lesser mouse deer. These results permitted an easy phylogenetic analysis based on the sequences of an autosomal gene. A phylogenetic tree was constructed from the mature K-casein sequences and compared with the tree of the cytochrome b genes which were sequenced from the same individuals. The Cervidae (sika deer, Cervus nippon) were separated from the branch of the Bovidae on the tree of -casein genes with a relatively high confidence level of the bootstrap analysis, but included in the branch of the Bovidae on the tree of cytochrome b genes. The -casein tree indicated a monophyly of the subfamily Caprinae, although the internal branches were uncertain in the Caprinae. The tree based on the nucleotide sequences of cytochrome b genes clearly showed the relationships of the closely related species in the genus Capricornis consisting of serow (C. smatorensis), Japanese serow (C. crispus), and Formosan serow (C. swinhoei). These results would be explained by the difference of resolving power between the -casein and the cytochrome b sequences. Correspondence to: K. Chikuni  相似文献   
50.
Abstract: Among various tissues of mouse, β1,4- N -acetylgalactosaminyltransferase (GM2/GD2 synthase) gene is expressed predominantly in the brain. Further analysis of the gene expression in the mouse CNS was performed by northern blotting and by enzyme assays using extracts from various parts of the CNS. In situ hybridization was also done to investigate the distribution of cells generating GM2/GD2 synthase. In northern blots, diverse levels of the gene expression were observed, depending on the regions examined. By in situ hybridization, pyramidal cells in the hippocampus, granular cells in dentate gyrus and cerebral cortex, Purkinje cells in cerebellum, and mitral cells in the olfactory bulb expressed high levels of the mRNA; these results corresponded to the results obtained by northern blot. Enzyme levels in these sites were accordingly high. However, enzyme levels in certain areas with low mRNA intensities, such as thalamus and pons medulla, were higher than expected from the results of northern blotting. The significance of the high gene expression in certain areas for brain function and the reason for the discrepancy between mRNA level and enzyme activity in some regions are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号