首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   24篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2017年   5篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   5篇
  2012年   16篇
  2011年   6篇
  2010年   11篇
  2009年   10篇
  2007年   5篇
  2006年   5篇
  2005年   10篇
  2004年   3篇
  2003年   8篇
  2002年   9篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   6篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   12篇
  1987年   8篇
  1986年   7篇
  1985年   9篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   8篇
  1976年   2篇
  1975年   3篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1969年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有276条查询结果,搜索用时 203 毫秒
71.
Clonal growth enables plants to transport resources among separately rooted but connected ramets, a potential advantage in patchy or unpredictable habitats. Nevertheless, clonal plants are relatively scarce in deserts. To test whether clonal integration of water relations can increase plant performance under natural conditions in a desert species, water movement was traced and connection among ramets was manipulated in the rhizomatous grass Distichlis spicata in Death Valley, California. To examine potential costs of clonal growth form, connections were mapped and analyzed for dry mass and nitrogen content. Movement of dye showed potential transport of water among five ramets up to 1.4 m apart. Severance of connecting rhizomes increased mortality and decreased water potential of individual ramets within 36 hr, indicating that water sharing among ramets could be of significant benefit. However, plants had a high investment of mass and nitrogen in underground organs, which might be a cost of clonal growth associated with desert environments.  相似文献   
72.
During vertebrate locomotion, spinal neurons act as oscillators when initiated by glutamate release from descending systems. Activation of NMDA receptors initiates Ca2+-mediated intrinsic membrane potential oscillations in central pattern generator (CPG) neurons. NMDA receptor-dependent intrinsic oscillations require Ca2+-dependent K+ (KCa2) channels for burst termination. However, the location of Ca2+ entry mediating KCa2 channel activation, and type of Ca2+ channel – which includes NMDA receptors and voltage-gated Ca2+ channels (VGCCs) – remains elusive. NMDA receptor-dependent Ca2+ entry necessitates presynaptic release of glutamate, implying a location at active synapses within dendrites, whereas VGCC-dependent Ca2+ entry is not similarly constrained. Where Ca2+ enters relative to KCa2 channels is crucial to information processing of synaptic inputs necessary to coordinate locomotion. We demonstrate that Ca2+ permeating NMDA receptors is the dominant source of Ca2+ during NMDA-dependent oscillations in lamprey spinal neurons. This Ca2+ entry is synaptically located, NMDA receptor-dependent, and sufficient to activate KCa2 channels at excitatory interneuron synapses onto other CPG neurons. Selective blockade of VGCCs reduces whole-cell Ca2+ entry but leaves membrane potential and Ca2+ oscillations unaffected. Furthermore, repetitive oscillations are prevented by fast, but not slow, Ca2+ chelation. Taken together, these results demonstrate that KCa2 channels are closely located to NMDA receptor-dependent Ca2+ entry. The close spatial relationship between NMDA receptors and KCa2 channels provides an intrinsic mechanism whereby synaptic excitation both excites and subsequently inhibits ventral horn neurons of the spinal motor system. This places the components necessary for oscillation generation, and hence locomotion, at glutamatergic synapses.  相似文献   
73.
Unmanipulated early growth response-1 (Egr-1)-deficient -/- mice have similar heart-to-body weight ratios but express lower amounts of atrial natriuretic factor (ANF), beta-myosin heavy chain (beta-MHC), skeletal actin, NGF1-A binding protein (NAB)-2, Sp1, c-fos, c-jun, GATA-4, and Nkx2.5 than +/+ or +/- mice. alpha-MHC, tubulin, and NAB-1 expression was similar. Isoproterenol (Iso) and phenylephrine (PE) infusion into +/+ and -/- mice increased heart weight, ANF, beta-MHC, skeletal actin, Sp1, NAB-2, c-fos, and c-jun expression, but induction in -/- mice was lower. Only Iso + PE-treated +/+ mice showed induction of NAB-1, GATA-4, and Nkx2.5. Foci of fibrosis were found in Iso + PE-treated -/- and +/+ mice. Surprisingly, vehicle-treated -/- mice displayed fibrosis and increased Sp1, skeletal actin, Nkx2.5, and GATA-4 expression without hypertrophy. Minipump removal caused the agonist-treated hearts and gene expression to regress to control or near-control levels. Thus Egr-1 deficiency caused a blunted catecholamine-induced hypertrophy response and increased sensitivity to stress.  相似文献   
74.
Increased nitrogen availability is known to favor invasion by non-native plants into natural grasslands. This suggests that decreasing nitrogen availability might serve as a countermeasure against invasion. One way to at least temporarily decrease nitrogen availability to plants is to increase microbial nitrogen uptake by adding carbon to the soil, and sawdust is a carbon source whose low cost could make it a practical conservation tool. To test whether adding sawdust to soil can counter the tendency of nitrogen enrichment to promote invasions by non-native plants, we hand-tilled 1.5kg sawdust/m2 into the upper soil of the bare, nitrogen-rich patches left by dead shrubs of the nitrogen-fixing shrub Lupinus arboreus in two nearby areas with contrasting levels of invasion in a coastal grassland in northern California. After two years, in both areas, patches with sawdust had 40% less biomass of non-native plants than patches without sawdust, whereas biomass of native plants was not affected by sawdust addition. The more negative effect of sawdust on non-native species was specifically due to an effect on non-native grasses; adding sawdust increased the frequency of both native and non-native forbs. Results suggest that adding carbon as sawdust to soil can help counter invasion of grassland by non-native plants when invasion is being promoted by increased nitrogen availability, especially when the major invasive species are grasses.  相似文献   
75.
76.
77.
The efficacy of electromyographic feedback training in reducing the magnitude and frequency of the oral-lingual movements associated with tardive dyskinesia (TD) was investigated in a groups design. Twenty adult male inpatients diagnosed as having TD using the Abnormal Involuntary Movements Scale (AIMS) were randomly assigned to one of two treatment conditions. Following identification, all participants were initially reduced to the lowest effective dosage of neuroleptics, and then discontinued from anticholinergics. Following one month on this regimen, they were given a course of feedback training consisting of ten 14-minute sessions. Group one participants were provided with a tone contingent upon oral-lingual movements above a yoked threshold. Group two participants were given noncontingent feedback tones generated randomly. Weekly AIMS were administered as well as an initial baseline during each session to determine current level of oral-lingual activity. An analysis of session effects indicated significantly more suppression of oral-lingual activity in the contingent group versus the noncontingent feedback group. Jaw and forehead activity also measured showed reductions of similar magnitudes for both groups.This work was sponsored in part by a Research Advisory Grant from the Department of Veterans Affairs awarded to Joanne Intrator. We gratefully acknowledge the valuable contributions of K. Duvvi, S. Kemble, and L. Kolman.  相似文献   
78.
79.
For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.  相似文献   
80.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002–2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号