首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   15篇
  204篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   11篇
  2015年   7篇
  2014年   11篇
  2013年   9篇
  2012年   14篇
  2011年   12篇
  2010年   9篇
  2009年   8篇
  2008年   6篇
  2007年   13篇
  2006年   5篇
  2005年   9篇
  2004年   12篇
  2003年   5篇
  2002年   8篇
  2001年   8篇
  2000年   7篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1983年   1篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
51.
52.
Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non‐intuitive ways, the high‐dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco‐evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem‐level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research.  相似文献   
53.
Glycosaminoglycans [GAGs] are essential heteropolysaccharides in vertebrate tissues that are also, in certain cases, employed as virulence factors by microbes. Hyaluronan [HA], heparin, and chondroitin sulfate [CS] are GAGs currently used in various medical applications and together are multi-billion dollar products thus targets for production by animal-free manufacture. By using bacteria as the source of GAGs, the pathogen’s sword may be converted into a plowshare to help avoid potential liabilities springing from the use of animal-derived GAGs including adventitious agents (e.g., prions, pathogens), antigenicity, degradation of the environment, and depletion of endangered species. HA from microbes, which have a chemical structure identical to human HA, has already been commercialized and sold at the ton-scale. Substantial progress towards microbial heparin and CS has been made, but these vertebrate polymers are more complicated structurally than the unsulfated bacterial polysaccharide precursors thus require additional processing steps. This review provides an overview of GAG structure, medical applications, microbial biosynthesis, and the state of bacterial GAG production systems. Representatives of all glycosyltransferase enzymes that polymerize the sugar chains of the three main GAGs have been identified and serve as the core technology to harness, but the proteins involved in sugar precursor formation and chain export steps of biosynthesis are also essential to the GAG production process. In addition, this review discusses future directions and potential important issues. Overall, this area is poised to make great headway to produce safer (both increased purity and more secure supply chains) non-animal GAG-based therapeutics.  相似文献   
54.
55.
Rapidly fluctuating environmental conditions can significantly stress organisms, particularly when fluctuations cross thresholds of normal physiological tolerance. Redox potential fluctuations are common in humid tropical soils, and microbial community acclimation or avoidance strategies for survival will in turn shape microbial community diversity and biogeochemistry. To assess the extent to which indigenous bacterial and archaeal communities are adapted to changing in redox potential, soils were incubated under static anoxic, static oxic or fluctuating redox potential conditions, and the standing (DNA‐based) and active (RNA‐based) communities and biogeochemistry were determined. Fluctuating redox potential conditions permitted simultaneous CO2 respiration, methanogenesis, N2O production and iron reduction. Exposure to static anaerobic conditions significantly changed community composition, while 4‐day redox potential fluctuations did not. Using RNA : DNA ratios as a measure of activity, 285 taxa were more active under fluctuating than static conditions, compared with three taxa that were more active under static compared with fluctuating conditions. These data suggest an indigenous microbial community adapted to fluctuating redox potential.  相似文献   
56.
57.
Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ∼40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model.  相似文献   
58.
Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).  相似文献   
59.
Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long-term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long-term warming, we sampled soils from 13- and 28-year-old soil warming experiments in different seasons. We performed short-term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally-induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C-cycling processes to decadal warming. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long-term warming effects on these soils.  相似文献   
60.
The cationic fluorochrome rhodamine 123 (R123) is specifically taken up by mitochondria of live cells where it is retained due to the mitochondrial transmembrane potential. After pulse exposure of human normal quiescent or proliferating lymphocytes, human lymphocytic leukemic MOLT cells, and mice leukemic L1210 cells to 10 micrograms/ml of R123, the dye release was studied using flow cytometry. Two distinct phases of R123 release, each following first-order kinetics, were apparent; the half-time of retention for the rapidly and slowly released fractions of R123 was 0.8-1.1 and 2.8-4.2 h, respectively. Simultaneous supravital cell staining with R123 and Hoechst 33342 made it possible to correlate retention of R123 with cell position in the cell cycle. No significant differences were observed in the rate of R123 release from cells in G1 vs S or vs G2 + M phases of the cycle. The data rule out a possibility that the release of R123 is due to periodic depolarization of the mitochondria in the cell as may be postulated by cell cycle models that assume a transient passage of cells through resting phase following division. The observed similar rates of R123 release regardless of cell type or cell cycle phase suggest that the factors affecting the exchange are similar in normal lymphocytes vs leukemic cells and unrelated to cell proliferation rate or phase of the cell cycle. Two distinct rates of R123 release indicate the presence of two kinds of binding sites differing in affinity to the dye.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号