首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  23篇
  2021年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1990年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two nonsequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide, which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL's arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme's ability to catalyze the conversion of succinyladenosine monophosphate than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights into why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild type (WT) and the R303C mutant of ADSL were investigated enzymatically and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL's cooperativity. By utilizing this information, a model for the interaction between ADSL and SAICAR is proposed.  相似文献   
12.

Background  

Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge.  相似文献   
13.
Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne, negative-sense, single-stranded RNA [ssRNA(−)] nairovirus that produces fever, prostration, and severe hemorrhages in humans. With fatality rates for CCHF ranging up to 70% based on several factors, CCHF is considered a dangerous emerging disease. Originally identified in the former Soviet Union and the Congo, CCHF has rapidly spread across large sections of Europe, Asia, and Africa. Recent reports have identified a viral homologue of the ovarian tumor protease superfamily (vOTU) within its L protein. This protease has subsequently been implicated in downregulation of the type I interferon immune response through cleavage of posttranslational modifying proteins ubiquitin (Ub) and the Ub-like interferon-simulated gene 15 (ISG15). Additionally, homologues of vOTU have been suggested to perform similar roles in the positive-sense, single-stranded RNA [ssRNA(+)] arteriviruses. By utilizing X-ray crystallographic techniques, the structure of vOTU covalently bound to ubiquitin propylamine, a suicide substrate of the enzyme, was elucidated to 1.7 Å, revealing unique structural elements that define this new subclass of the OTU superfamily. In addition, kinetic studies were carried out with aminomethylcoumarin (AMC) conjugates of monomeric Ub, ISG15, and NEDD8 (neural precursor cell expressed, developmentally downregulated 8) substrates in order to provide quantitative insights into vOTU''s preference for Ub and Ub-like substrates.Crimean-Congo hemorrhagic fever (CCHF) is characterized in humans by the sudden onset of fever, myalgia, headache, dizziness, sore eyes, photophobia, and hyperanemia as well as severe hemorrhages (28, 43, 46). The causative agent of CCHF is the CCHF virus, which is a tick-borne, negative-sense, single-stranded RNA [ssRNA(−)] virus of the genus Nairovirus, belonging to the viral family Bunyaviridae. Originally named after outbreaks in the former Soviet Union and in the Congo during the mid-20th century, the affected area of this disease has rapidly spread to large areas of sub-Saharan Africa, the Balkans, Northern Greece, European Russia, Pakistan, the Arabian Peninsula, Iran, Afghanistan, Iraq, Turkey, and recently, the Xinjiang province of China (43, 46). The CCHF viral genome, as well as those of the closely related Dugbe and Nairobi viruses, consists of three negative-sense RNA segments, small (S), medium (M), and large (L). Incubation of CCHF is 5 to 6 days, with fatalities occurring less than 7 days after signs of infection. Fatality rates for patients infected with the CCHF virus ranged from 5% to 70%, depending on phylogenetic variation of the virus, transmission route, treatment facility, and the reporting and confirmation of the case statistics (19, 32, 43, 47).The innate immune system serves as the human''s first line of defense from invading pathogens, including CCHF virus. The type I interferon (IFN) response comprises a key component of this system by upregulating more than 300 IFN-stimulated genes (ISGs) whose products detect viral molecules, promote amplification of the type I IFN response, modulate other signaling pathways, and directly provide antiviral activity (34). Regulation of the type I IFN response has been shown to rely on posttranslational modification by ubiquitin (Ub) and the Ub-like interferon-simulated gene 15 (ISG15) (14, 23). Both Ub and ISG15 are expressed in a proform and cleaved to leave a double-glycine C terminus that forms an isopeptide bond with predominantly the ɛ-NH2 of lysine residues of a target protein through a three-step enzymatic process. In addition to forming isopeptide bonds with target proteins, Ub, which contains seven lysine residues, has been observed to form poly-Ub chains. The most studied of these moieties are K29-linked, K48-linked, and K63-linked poly-Ub. While K29-linked and K48-linked polyubiquitination of proteins leads to their degradation in the lysosome and proteasome, respectively, conjugation of K63-linked poly-Ub to proteins has an activating effect, resulting in an enhanced type I IFN response (2, 7, 18, 33, 40). Currently, more than 150 proteins have been identified as forming conjugates with ISG15, with the number of proteins forming Ub conjugates far exceeding that number (12, 48). A subset of type I IFN signaling and effector proteins that Ub and ISG15 have been shown to stabilize includes JAK1, STAT1/2, double-stranded RNA-dependent protein kinase (PKR), myxovirus-resistant protein A (MxA), and RIG-I (17). MxA has particularly shown to be important in type I IFN response to CCHF infection. RIG-I and several other proteins have also been shown to be targets for K63-linked poly-Ub (4).Recently, investigators have identified a cysteine viral ovarian tumor domain (vOTU) protease colocated with the RNA-dependent RNA polymerase in the L protein of the CCHF virus (14). Interestingly, as CCHF is an ssRNA(−) virus, no protease is required to cleave a viral polypeptide to facilitate viral replication as in positive-sense ssRNA [ssRNA(+)] viruses. Furthermore, recent reports have observed that vOTU is not required for RNA-dependent RNA polymerase activity and for vOTU protease activity linked to impairment of the type I IFN response through its deubiquitinating and deISGylating activity (6, 14). Additional studies have also tentatively identified the presence of vOTU homologues in the Arterivirus genus of the Arteriviridae family, suggesting that they too may facilitate impairment of the type I IFN response (14). Since the discovery of the first ovarian tumor domain (OTU) protease in Drosophila oogenesis and prior to the identification of vOTU, OTU superfamily members could be divided into three subclasses according to their sequence homology, otubains, A20-like OTUs, and ubiquitin thioesterase ZRANB1 (22). With the addition of the viral OTU subclass, OTU superfamily members in more than 100 eukaryotic, bacterial, and viral proteins have now been identified (6, 27). Predominantly, OTU proteases have been linked to ubiquitin (Ub) removal and/or remodeling of Ub-conjugated proteins, placing them among five protease superfamilies that facilitate signal transduction cascades and play key roles in protein stability (22). However, vOTU is unique in that it is the only OTU to have shown both deubiquitinating and deISGylating activity (14). Instead, Otubain1/2 (OTUB1/2) plays a key role in T cell response and prefers K48-linked poly-Ub or NEDD8 (neural precursor cell expressed, developmentally downregulated 8) as a substrate (12). A20 and A20-like Cezanne OTU proteases are negative regulators of the NF-κB-mediated inflammation response, selectively cleaving K63-linked poly-Ub targets. DUBA also shows preference for K63-linked poly-Ub (20). In attempts to better understand the OTU superfamily, structures of OTUB and A20-like OTU domains have been elucidated (12, 21, 30). An X-ray structure of the yeast ovarian tumor 1 (yOTU1) domain, which interacts with Cdc48 and has a preference for K48-linked poly-Ub, was achieved in complex with mono-Ub (27). However, since yOTU1 has a preference for K48-linked Ub and possesses low sequence identity to vOTU and other OTU domain proteases, only limited information on vOTU could be obtained. In addition to vOTU, several other viral proteases, such as papain-like protease (PLpro) from the severe acute respiratory syndrome (SARS) coronavirus, have also shown deubiquitinating and deISGylating activity to evade the innate immune system (6, 8, 43, 49). However, no viral proteases that are known to possess deISGylating activity have been visualized as being bound to Ub or Ub-like substrates. To address this issue and elucidate the atomic-level structure of a member from the viral OTU superfamily subclass, we have obtained the X-ray crystal structure of vOTU bound with Ub (vOTU-Ub). We also have characterized the vOTU substrate specificity for mono-Ub, ISG15, and NEDD8 and compared the results with those from human OTUB2 (hOTUB2). Additionally, we assessed vOTU''s deubiquitinating activity toward K48- and K63-linked poly-Ub.  相似文献   
14.
15.
GC Vanlerberghe  L McIntosh    JY Yip 《The Plant cell》1998,10(9):1551-1560
Using in organellar assays, we found that significant tobacco alternative oxidase (AOX) activity is dependent on both reduction of a putative regulatory disulfide bond and the presence of pyruvate, which may interact with a Cys sulfhydryl. This redox modulation and pyruvate activation thus may be important in determining the partitioning of electrons to AOX in vivo. To investigate these regulatory mechanisms, we generated tobacco plants expressing mutated AOX proteins. Mutation of the most N-terminal Cys residue (Cys-126) to an Ala residue produced an AOX that could not be converted to the disulfide-linked form, thus identifying this Cys residue as being responsible for redox modulation. Although this mutation might be expected to produce an AOX with constitutive high activity in the presence of pyruvate, we found it to have minimal in organellar activity in the presence of pyruvate. Nonetheless, the Cys-126 mutation did not appear to have compromised the catalytic function of AOX, given that cells expressing the protein displayed high rates of cyanide-resistant respiration in vivo. The striking difference between in vivo and in organellar results suggests that an additional mechanism(s), as yet unidentified by in organellar assays, may promote activity in vivo. Mutation of the Cys residue nearest the presumptive active site (Cys-176) to an Ala residue did not prevent disulfide bond formation or affect the ability of AOX to be stimulated by pyruvate, indicating that this Cys residue is involved in neither redox modulation nor pyruvate activation.  相似文献   
16.

Background

Irreversible airflow obstruction in Chronic Obstructive Pulmonary Disease (COPD) is thought to result from airway remodelling associated with aberrant inflammation. Patients who experience frequent episodes of acute deterioration in symptoms and lung function, termed exacerbations, experience a faster decline in their lung function, and thus over time greater disease severity However the mechanisms by which these episodes may contribute to decreased lung function are poorly understood.This study has prospectively examined changes in sputum levels of inflammatory cells, MMP-9 and TIMP-1 during exacerbations comparing with paired samples taken prior to exacerbation.

Methods

Nineteen COPD patients ((median, [IQR]) age 69 [63 to 74], forced expiratory volume in one second (FEV1) 1.0 [0.9 to1.2], FEV1% predicted 37.6 [27.3 to 46.2]) provided sputa at exacerbation. Of these, 12 were paired with a samples collected when the patient was stable, a median 4 months [2 to 8 months] beforehand.

Results

MMP-9 levels increased from 10.5 μg/g [1.2 to 21.1] prior to exacerbation to 17.1 μg/g [9.3 to 48.7] during exacerbation (P < 0.01). TIMP-1 levels decreased from 3.5 μg/g [0.6 to 7.8] to 1.5 μg/g [0.3 to 4.9] (P = 0.16). MMP-9/TIMP-1 Molar ratio significantly increased from 0.6 [0.2 to 1.1] to 3.6 [2.0 to 25.3] (P < 0.05). Neutrophil, eosinophil and lymphocyte counts all showed significant increase during exacerbation compared to before (P < 0.05). Macrophage numbers remained level. MMP-9 levels during exacerbation showed highly significant correlation with both neutrophil and lymphocyte counts (Rho = 0.7, P < 0.01).

Conclusion

During exacerbation, increased inflammatory burden coincides with an imbalance of the proteinase MMP-9 and its cognate inhibitor TIMP-1. This may suggest a pathway connecting frequent exacerbations with lung function decline.  相似文献   
17.
Diel movements of Orange–Vaal smallmouth yellowfish Labeobarbus aeneus (Burchell, 1822) in the Vaal River, South Africa, were determined by externally attaching radio transmitters to 11 adult fish and manually tracking them between March and May 2012. Twenty-four radio telemetry monitoring surveys produced 2 304 diel tracks. At night, yellowfish displayed a preference for slow shallow (<0.3?m s?1, <0.5?m) and fast shallow habitats (>0.3?m s?1, <0.3?m), whereas by day they avoided these habitats, preferring fast deep areas (>0.3?m s?1, >0.3?m). The average total distance of 272?m moved per 24-hour period was three times greater than the diel range, and the average maximum displacement per minute was significantly higher in daytime (4?m) than at night (1.5?m). These findings suggest that L. aeneus is active primarily during the day in fast-flowing, deeper waters, and relatively inactive at night, when it occupies shallower habitats. This behaviour should be further explored to identify causal mechanisms underlying the diel habitat shifts in this species such as water temperature, foraging tactics and/or predator avoidance.  相似文献   
18.
19.
BACKGROUND: The EPISTENT trial reported improved early outcomes with routine use of abciximab after coronary stenting. Increasing use of stents means that routine abciximab adds significantly to costs of percutaneous coronary intervention (PCI). This paper reports the results of a protocol encouraging restriction of abciximab therapy to high-risk patients only. METHODS: Data were collected prospectively over a 34-month period for patients undergoing PCI with stenting. In addition to those who fulfilled criteria for inclusion in the EPISTENT trial, patients treated in the setting of acute myocardial infarction (AMI) were studied. Demographic data, procedural details and early clinical outcomes were recorded. RESULTS: Of 808 patients studied, 601 fulfilled EPISTENT inclusion criteria and comprised 367 patients (45%) treated for stable angina and 234 (30%) treated for unstable or post-infarct angina. The additional 207 patients (25%) were treated during AMI. The 808 patients received a total of 981 stents. Abciximab was given in only 88 cases (10.9%). Major adverse clinical events occurred in 39 patients (4.8%). CONCLUSION: Selective use of abciximab for patients undergoing coronary stenting can be associated with outcomes equivalent to those reported for routine use, but with significant cost savings.  相似文献   
20.
Thirty-four senior dogs (pointers 8 - 11 years, beagles 9 - 11 years) were used to evaluate the effects of oligosaccharides on nutritional and immunological characteristics. Dogs were randomly allotted to treatments [1% chicory (CH), 1% mannan-oligosaccharide (MOS), 1% chicory + 1% MOS (CM), or no supplementation (control, CON)] in a parallel design with a 4 week baseline period followed by a 4 week treatment period. Dietary supplementation with MOS or CM tended (P = 0.07) to increase food intake due, in part, to an increase in fermentable fibre and a decrease in energy content of the diet. Although wet faecal output increased (P < 0.05) for dogs supplemented with MOS or CM, when corrected for food intake, no differences were noted. The CM treatment increased (P < 0.05) faecal score (1 = hard and dry, 5 = watery liquid), although these scores remained in a desirable range (3 to 3.5). Chicory supplementation increased (P = 0.07) fat digestibility. Chicory or MOS increased (P  0.05) faecal bifidobacteria concentrations 0.4 and 0.5 log10 cfu/g DM, respectively, compared to the CON, while MOS decreased (P < 0.05) faecal E. coli concentrations. Oligosaccharides did not affect white blood cell (WBC) concentrations, but CH and CM tended to increase (P = 0.10) neutrophil concentrations compared to control dogs. Peripheral lymphocyte concentrations were decreased in dogs supplemented with MOS (P = 0.06) and CM (P < 0.05). Chicory and MOS alter faecal microbial populations and certain indices of the immune system of senior dogs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号