首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   19篇
  国内免费   3篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   10篇
  2013年   20篇
  2012年   8篇
  2011年   19篇
  2010年   12篇
  2009年   12篇
  2008年   14篇
  2007年   10篇
  2006年   11篇
  2005年   12篇
  2004年   12篇
  2003年   11篇
  2002年   3篇
  2001年   9篇
  2000年   5篇
  1999年   12篇
  1998年   5篇
  1997年   9篇
  1996年   3篇
  1995年   1篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有264条查询结果,搜索用时 234 毫秒
31.
32.
In the classic paradigm, immunoglobulins represent products of clonal B cell populations, each producing antibodies (Abs) recognizing a single antigen. There is a common belief that IgGs in mammalian biological fluids are monovalent molecules having stable structures and two identical antigen-binding sites. However, human milk IgGs to different antigens undergo extensive half-molecule exchange. In the IgGs pool, only 33±5% and 13±5% of Abs contained light chains exclusively of kappa- or lambda-type, respectively, while 54±10% of the IgGs contained both kappa- and lambda- light chains. All Ab preparations contained different amounts of IgGs of all four subclasses. Interestingly, lambda-IgGs contained an increased amount of IgG2 (87%) and only 3-6% of each of IgG1, IgG3, and IgG4, while kappa-IgGs consisted of comparable (17-32%) amounts of all IgG subtypes. Chimeric kappa-lambda-IgGs consisted of ~74% IgG1, ~16% IgG2, ~5% IgG3 and ~5% IgG4. As the result of the exchange, all IgG fractions eluted from several specific affinity sorbents under the conditions destroying strong immunocomplexes demonstrated high catalytic activities in hydrolysis of ATP, DNA, oligosaccharides, phosphorylation of proteins, lipids, and oligosaccharides. In vitro, an addition of reduced glutathione and milk plasma to two IgG fractions with different affinity for DNA-cellulose led to a transition of 25-60% of Ab of one fraction to the other fraction. Our data are indicative of the possibility of half-molecule exchange between milk IgGs of various subclasses, raised against different antigens (including abzymes), which explains the polyspecificity and cross-reactivity of these IgGs.  相似文献   
33.
Uracil-DNA glycosylase (Ung) can quickly locate uracil bases in an excess of undamaged DNA. DNA glycosylases may use diffusion along DNA to facilitate lesion search, resulting in processivity, the ability of glycosylases to excise closely spaced lesions without dissociating from DNA. We propose a new assay for correlated cleavage and analyze the processivity of Ung. Ung conducted correlated cleavage on double- and single-stranded substrates; the correlation declined with increasing salt concentration. Proteins in cell extracts also decreased Ung processivity. The correlated cleavage was reduced by nicks in DNA, suggesting the intact phosphodiester backbone is important for Ung processivity.  相似文献   
34.
While long-term fixation and storage of specimens is common and useful for many research projects, it is particularly important for space flight investigations where samples may not be returned to Earth for several months (International Space Station) or years (manned mission to Mars). We examined two critical challenges of space flight experimentation: the effect of long-term fixation on the quality of mouse bone preservation and the preservation of antigens and enzymes for both histochemical and immunohistochemical analyses, and how the animal/sample processing affects the preservation. We show that long-term fixation minimally affects standard histological staining, but that enzyme histochemistry and immunolabeling are greatly compromised. Further, we demonstrate that whole animal preservation is not as suitable as whole leg or stripped leg preservation for long-term fixation and all histological analyses. Overall, we recommend whole leg processing for long-term storage of bone specimens in fixative prior to embedding in plastic for histological examination.  相似文献   
35.
Nevinsky  G. A. 《Molecular Biology》2004,38(5):636-662
According to the currently accepted model, enzymes searching for specific recognition sequences or structural elements (modified nucleotides, breaks, single-stranded DNA fragments, etc.) slide at a high rate along DNA. Such sliding is possible only if the enzymes possess sufficiently high affinity for all DNA, sequence notwithstanding. Therefore, significant differences in their affinity for specific and nonspecific DNA sequences are unlikely, and the formation of a complex between an enzyme and its target DNA is not a basic factor of enzyme specificity. To elucidate such factors, we have analyzed many DNA replication, DNA repair, topoisomerization, integration, and recombination enzymes using a number of physicochemical methods, including the method of stepwise increase in ligand complexity developed in our laboratory. It has been shown that high affinity of all studied enzymes for long DNAs is provided by the formation of many weak contacts of the enzyme with all nucleotide units covered by the protein globule. The main role lies in the contact between positively charged amino acid residues and internucleoside phosphate groups; however, the contribution of each contact is very small, and the full contact interface usually resembles that characteristic of interactions between oppositely charged biopolymer surfaces. In some cases, a significant contribution to the affinity is made through hydrophobic and/or van der Waals interactions of the enzymes with nucleotide bases. On the whole, such nonspecific interactions provide for five to eight orders of enzyme affinity for DNA, depending on the enzyme. Specific interactions of enzymes with long DNAs, in contrast to their contacts with small ligands, are usually weak and comparable in efficiency with weak nonspecific contacts. The sum of specific interactions most often provides for approximately one or, rarely, two orders of affinity. According to structural data, DNA binding to any of the investigated enzymes is followed by a stage of DNA conformation adjustment, which includes partial or complete DNA melting, deformation of its backbone, stretching, compression, bending or kinking, eversion of nucleotides from the DNA helix, etc. The full set of such changes is specific for each individual enzyme. The fact that all enzyme-dependent changes in DNA are effected through weak specific (rather than strong) interactions is very important. Enzyme-specific changes in DNA conformation are required for effective adjustment of reacting orbitals to an accuracy of 10°–15°, which is possible only in the case of specific DNAs. A transition from nonspecific to specific DNA leads to an increase in the reaction rate (k cat) by four to eight orders of magnitude. Thus, the stages of DNA conformation adjustment and catalysis proper provide for the high specificity of enzyme action.  相似文献   
36.
HIV‐infected patients possess anti‐integrase (IN) IgGs and IgMs that, after isolation by chromatography on IN‐Sepharose, unlike canonical proteases, specifically hydrolyze only IN but not many other tested proteins. Hydrolysis of intact globular IN first leads to formation of many long fragments of protein, while its long incubation with anti‐IN antibodies, especially in the case of abzymes (Abzs) with a high proteolytic activity, results in the formation of short and very short oligopeptides (OPs). To identify all sites of IgG‐mediated proteolysis corresponding to known AGDs of integrase, we have used a combination of reverse‐phase chromatography, matrix‐assisted laser desorption/ionization spectrometry, and thin‐layer chromatography to analyze the cleavage products of two 20‐mer OPs corresponding to these AGDs. Both OPs contained 9–10 mainly clustered major, medium, and minor sites of cleavage. The main superficial cleavage sites of the AGDs in the intact IN and sites of partial or deep hydrolysis of the peptides analyzed do not coincide. The active sites of anti‐IN Abzs are localized on their light chains, whereas the heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of Abzs provide high specificity of IN hydrolysis. The affinity of anti‐IN Abzs for intact integrase was ~1000‐fold higher than for the OPs. The data suggest that both OPs interact mainly with the light chains of different monoclonal Abzs of the total pool of IgGs, which possesses lower affinity for substrates; and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific and remarkably different in comparison with the cleavage of intact globular IN. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
37.
38.
The COVID-19 pandemic has presented significant challenges and implications for the sports community. Thus, this study aimed to describe the prevalence of COVID-19 in Brazilian athletes and identify the epidemiological, clinical, athletic, life and health factors associated with the disease in these individuals. A cross-sectional study was performed involving 414 athletes from 22 different sports using an online questionnaire from August to November 2020. The association between the athletes’ characteristics and COVID-19 was evaluated using a logistic regression model. The prevalence of COVID-19 was 8.5%, although only 40% of athletes reported having been tested. Being under 27 years of age (3-fold), having children (~5-fold), having a teammate test positive for COVID-19 (2.5-fold), and smoking (14-fold) were associated with a possible higher risk of disease. Almost 20% of athletes self-reported musculoskeletal injuries during the period of the pandemic that was studied. Athletes with a university education (P = 0.02), a profession other than sports (P < 0.001), those from a low-income family (P = 0.01), and public health system users (P = 0.04) were significantly less frequently tested for COVID-19, whereas international competitors, athletes who received a wage, and athletes who had a teammate who tested positive for COVID-19 were 2-, 3-, and 15-fold more likely to be tested for COVID-19, respectively. Approximately 26% of the athletes who tested negative or were untested reported more than three characteristic COVID-19 symptoms, and 11% of athletes who tested positive for COVID-19 were asymptomatic. The identification of modifiable (have children, smoking, and teammates positively tested) and non-modifiable (age under 27 years) factors related to COVID-19 in athletes can contribute to implementing surveillance programmes to decrease the incidence of COVID-19 in athletes and its negative impacts in sports.  相似文献   
39.
Interaction of the DNA type I topoisomerases from the murine and human placenta cells with nonspecific oligonucleotides was analyzed. The contributions of strong and week nonspecific electrostatic, van der Waals's, and hydrophobic interactions, and hydrogen bonding of the enzymes to the complex formation with the single- and double-stranded DNAs were determined. The factors that determine the top-priority recognition of the topologically stressed DNA were revealed. The results were interpreted in comparison with the X-ray analysis data for human DNA topoisomerase I.  相似文献   
40.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号