首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1070759篇
  免费   111003篇
  国内免费   425篇
  2018年   10042篇
  2016年   13388篇
  2015年   17364篇
  2014年   20609篇
  2013年   30191篇
  2012年   33410篇
  2011年   34373篇
  2010年   23497篇
  2009年   21754篇
  2008年   30772篇
  2007年   32137篇
  2006年   30124篇
  2005年   28906篇
  2004年   28803篇
  2003年   27810篇
  2002年   27078篇
  2001年   44358篇
  2000年   44014篇
  1999年   35536篇
  1998年   13450篇
  1997年   13636篇
  1996年   12970篇
  1995年   12078篇
  1994年   11704篇
  1993年   11777篇
  1992年   29727篇
  1991年   29222篇
  1990年   28603篇
  1989年   28132篇
  1988年   26172篇
  1987年   24934篇
  1986年   23331篇
  1985年   23603篇
  1984年   19526篇
  1983年   16987篇
  1982年   13116篇
  1981年   11800篇
  1980年   11055篇
  1979年   18562篇
  1978年   14628篇
  1977年   13382篇
  1976年   12784篇
  1975年   14123篇
  1974年   15289篇
  1973年   15042篇
  1972年   13868篇
  1971年   12505篇
  1970年   10902篇
  1969年   10754篇
  1968年   9619篇
排序方式: 共有10000条查询结果,搜索用时 640 毫秒
241.
Calcium ionophores inhibit apoptosis in the IL-3-dependent cell line BAF3 and maintain the cells in a viable noncycling state. In this report, an identical effect of ionophore was also demonstrated on the multipotent IL-3-dependent progenitor cell line FDCP-MIX and on the primary IL-3-dependent cell population that could be cultured from murine bone marrow. Inhibition of apoptosis required extracellular calcium and could be blocked by cyclosporin A. Nuclei from IL-3-dependent cells were found to lack a calcium-activatable nuclease that degrades chromatin in the linker region between nucleosomes, unlike the nuclei of lymphoid cells. The mechanism of action of calcium ionophore could be divided into two distinct steps. First, ionophore induced the production of a survival factor that stimulated DNA synthesis and was identified as IL-4. Second, ionophore inhibited the cell cycle of the various IL-3-dependent cells. IL-4 production could be inhibited by cyclosporin A and required extracellular calcium, whereas cell cycle arrest did not. This implied that factor production was the step that was necessary for inhibition of apoptosis and maintenance of cell viability. This was confirmed by the use of an anti-IL-4R antibody, which blocked the inhibition of apoptosis induced by calcium ionophores.  相似文献   
242.
The processing of murine invariant chain (Ii) to a cell surface form bearing complex N-linked oligosaccharides has been demonstrated in the B cell lymphoma, AKTB-1b. In addition, the rate of processing of pulse-labeled Ii has been determined relative to its rate of dissociation from the alpha/beta complex of I-Ak. Ii, alpha-, and beta-chains were immunoprecipitated with anti-I-Ak or anti-Ii monoclonal antibodies. The heretofore uncharacterized complex oligosaccharide form of Ii (Ii-c) was identified in gel-purified immunoprecipitates by peptide mapping with reverse-phase HPLC. Ii-c is resistant to deglycosylation by Endo H, which is specific for high-mannose N-linkages, but can be digested with Endo F, a glycosidase capable of cleaving both complex and high-mannose N-linked oligosaccharides. Immunoprecipitation of surface iodinated cells indicates that Ii-c is expressed on the plasma membrane. Pulse-chase metabolic labeling data show that the processing of Ii to Ii-c occurs with a t1/2 of about 120 min. In contrast, the processing of both alpha- and beta-chains of I-Ak to complex forms occurs with a t1/2 of 15 to 20 min. Our data show that Ii-hm begins to dissociate rapidly from the I-Ak complex after 100 to 120 min of chase. Only a small amount (less than 5% on a per mole basis) of Ii-c was found associated with the I-Ak complexes after 300 min of continuous metabolic labeling. These results are consistent with Ii serving as a carrier for Ia antigens as they are transported to the cell surface. In addition, they suggest that the processing of Ii to Ii-c, or a late processing event of the alpha- and beta-chains, such as their sialylation, may be a possible mechanism for inducing the dissociation of Ii from the I-Ak complex.  相似文献   
243.
The effects on a cloned DNA fragment carrying an actinomycin resistance determinant on physiological processes in strains of streptomycetes with various potencies in producing this antibiotic, their inactive mutants, and the model strain ofStreptomyces lividans66 were studied. This fragment was shown to modulate bacterial resistance to actinomycin and biosynthesis of antibiotics.  相似文献   
244.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   
245.
Calcineurin purified from bovine brain is shown to possess phosphotyrosyl -protein phosphatase activity towards proteins phosphorylated by the epidermal growth factor receptor/kinase. The phosphatase activity is augmented by Ca2+/calmodulin or divalent cation (Ni2+ greater than Mn2+ greater than Mg2+ greater than Co2+). In the simultaneous presence of all three effectors, the enzymatic activity is synergistically increased. Ca2+/calmodulin activates the Mg2+-supported activity by decreasing the Km value for phosphotyrosyl -casein from 2.2 to 0.6 microM, and increasing the Vmax from 0.4 to 4.6 nmol/min/mg. These results represent the first demonstration that calcineurin can dephosphorylate phosphotyrosyl -proteins and suggest a novel mechanism of activation of this enzyme.  相似文献   
246.
247.
248.
Binomial parameters of transmitter secretion were calculated on the basis of analysis of synaptic potentials in the frog sartorius muscle. Negative values of the parameter p were found in some synapses. This happened most often in low Ca2+ concentrations and with low amplitude of miniature end-plate potentials. The results were interpreted in terms of a model assuming spatial heterogeneity of probability of transmitter quantum release at different release points. Simulation of transmitter secretion by computer showed that the appearance of negative values of the parameter p and incorrect estimates of n experimentally are connected with the form of distribution of probability of transmitter quantum release in the synapse and with the amplitude of miniature potentials.S. V. Kurashov Kazan' Medical Institute, Ministry of Health of the RSFSR. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 182–189, March–April, 1984.  相似文献   
249.
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号