首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   15篇
  国内免费   1篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   10篇
  2014年   8篇
  2013年   6篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有76条查询结果,搜索用时 78 毫秒
41.
2014年10月,张福有率野外调查队在吉林省抚松县漫江镇枫林村发现枫林遗址,并在2015年6月再次进行了调查确认,共发现石制品217件。石制品原料以黑曜岩为主,类型包括石核、石片、细石叶、工具和断块等。其中二类工具以刮削类使用石片为主,三类工具种类多样,加工较为精细。该遗址发现的手斧与阿舍利手斧较为相似,这在东北地区尚属首次,意义重大。经过研究分析,这是一处典型的以细石叶工艺为主的遗址。根据地层推测,遗址的年代为旧石器时代晚期。  相似文献   
42.
板井子遗址是泥河湾盆地晚更新世早期的一处重要遗址,光释光年代为距今8~9万年.本文以2015年出土的考古材料为研究对象,从地层的沉积环境、考古材料本体的埋藏特点两个角度,对板井子遗址的形成过程进行分析.分析表明,主文化层第5层为近原地埋藏类型,水流作用对小尺寸标本的保存及标本的空间集聚特征影响较大,但石制品技术类型组合...  相似文献   
43.
Physical origin of DNA condensation by multivalent cations remains unsettled. Here, we report quantitative studies of how one DNA-condensing ion (Cobalt3+ Hexammine, or Co3+Hex) and one nonDNA-condensing ion (Mg2+) compete within the interstitial space in spontaneously condensed DNA arrays. As the ion concentrations in the bath solution are systematically varied, the ion contents and DNA-DNA spacings of the DNA arrays are determined by atomic emission spectroscopy and x-ray diffraction, respectively. To gain quantitative insights, we first compare the experimentally determined ion contents with predictions from exact numerical calculations based on nonlinear Poisson-Boltzmann equations. Such calculations are shown to significantly underestimate the number of Co3+Hex ions, consistent with the deficiencies of nonlinear Poisson-Boltzmann approaches in describing multivalent cations. Upon increasing the concentration of Mg2+, the Co3+Hex-condensed DNA array expands and eventually redissolves as a result of ion competition weakening DNA-DNA attraction. Although the DNA-DNA spacing depends on both Mg2+ and Co3+Hex concentrations in the bath solution, it is observed that the spacing is largely determined by a single parameter of the DNA array, the fraction of DNA charges neutralized by Co3+Hex. It is also observed that only ∼20% DNA charge neutralization by Co3+Hex is necessary for spontaneous DNA condensation. We then show that the bath ion conditions can be reduced to one variable with a simplistic ion binding model, which is able to describe the variations of both ion contents and DNA-DNA spacings reasonably well. Finally, we discuss the implications on the nature of interstitial ions and cation-mediated DNA-DNA interactions.  相似文献   
44.
Long‐term peritoneal dialysis (PD) can lead to the induction of mesothelial/epithelial‐mesenchymal transition (MMT/EMT) and fibrosis; these effects eventually result in ultrafiltration failure and the discontinuation of PD. MicroRNA‐302c (miR‐302c) is believed to be involved in regulating tumour cell growth and metastasis by suppressing MMT, but the effect of miR‐302c on MMT in the context of PD is unknown. MiR‐302c levels were measured in mesothelial cells isolated from the PD effluents of continuous ambulatory peritoneal dialysis patients. After miR‐302c overexpression using lentivirus, human peritoneal mesothelial cell line (HMrSV5) and PD mouse peritoneum were treated with TGF‐β1 or high glucose peritoneal dialysate respectively. MiR‐302c expression level and MMT‐related factors alteration were observed. In addition, fibrosis of PD mouse peritoneum was alleviated by miR‐302c overexpression. Furthermore, the expression of connective tissue growth factor (CTGF) was negatively related by miR‐302c, and LV‐miR‐302c reversed the up‐regulation of CTGF induced by TGF‐β1. These data suggest that there is a novel TGF‐β1/miR‐302c/CTGF pathway that plays a significant role in the process of MMT and fibrosis during PD. MiR‐302c might be a potential biomarker for peritoneal fibrosis and a novel therapeutic target for protection against peritoneal fibrosis in PD patients.  相似文献   
45.
46.
Diabetic nephropathy (DN) is a major cause of end-stage renal disease. Although intense efforts have been made to elucidate the pathogenesis, the molecular mechanisms of DN remain to be clarified. To identify the candidate genes in the progression of DN, microarray datasets GSE30122, GSE30528, and GSE47183 were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network was constructed and the module analysis was performed using the Search Tool for the Retrieval of Interacting Genes and Cytoscape. A total of 61 DEGs were identified. The enriched functions and pathways of the DEGs included glomerulus development, extracellular exosome, collagen binding, and the PI3K-Akt signaling pathway. Fifteen hub genes were identified and biological process analysis revealed that these genes were mainly enriched in acute inflammatory response, inflammatory response, and blood vessel development. Correlation analysis between unexplored hub genes and clinical features of DN suggested that COL6A3, MS4A6A,PLCE1, TNNC1, TNNI1, TNN2, and VSIG4 may involve in the progression of DN. In conclusion, DEGs and hub genes identified in this study may deepen our understanding of molecular mechanisms underlying the progression of DN, and provide candidate targets for diagnosis and treatment of DN.  相似文献   
47.

Objective

Mesenchymal progenitor cells (MPCs) are found in articular cartilage from normal controls and patients with osteoarthritis (OA). Nevertheless, the molecular mechanisms of the proliferation and differentiation of these cells remain unclear. In this study, we aimed to determine the involvement of Wnt/β-catenin signaling in regulating the proliferation and differentiation of MPCs.

Methods

MPCs were isolated from the articular cartilage of normal and OA patients. Cells were sorted by immunomagnetic cell separation. Cell proliferation capacity was evaluated using the MTT assay. Toluidine blue staining and immunostaining with anti-collagen II or anti-aggrecan antibodies were used to determine the chondrogenic differentiation capabilities of MPCs. The mRNA and protein expression of target genes were examined by quantitative real-time polymerase chain reaction and Western blotting, respectively. Knock-down of p53 expression was achieved with RNA interference.

Results

Most cells isolated from the normal and OA patients were CD105+ and CD166+ positive (Normal subjects: CD105+/CD166+, 94.6%±1.1%; OA: CD105+/CD166+, 93.5%±1.1%). MPCs derived from OA subjects exhibited decreased differentiation capabilities and enhanced Wnt/β-catenin activity. Inhibition of Wnt/β-catenin signaling promoted proliferation and differentiation, whereas activation of this pathway by treatment with rWnt3a protein decreased the proliferation and differentiation of normal MPCs. Additionally, Wnt/β-catenin signaling positively regulated p53 expression, and silencing of p53 increased proliferation and differentiation of MPCs.

Conclusions

Wnt/β-catenin regulated the proliferation and differentiation of MPCs through the p53 pathway.  相似文献   
48.
49.
水洞沟遗址是中国北方旧石器时代晚期的著名遗址,石制品原料以就地取材的白云岩为主。本文利用水洞沟地区的白云岩生产细石叶和石片,进行了29组复制使用实验。对使用痕迹的观察表明:不同加工对象和使用方式导致细石叶上出现不同的微痕特征,细石叶适于装柄使用,以刮、切、削等利用侧刃缘的运动方式效率为高,尖部用于加工硬度较低的动植物效果较好。对比燧石、黑曜岩等不同石料的微痕实验数据可知,不同石料的产品,其使用痕迹存在一定差异。本文对白云岩细石叶的微痕实验,探讨了其适宜的使用方式和加工对象的范围,为分析水洞沟地区出土的白云岩细石叶功能提供了可资参考、对比的实验数据。  相似文献   
50.
Mu J  Tan H  Zheng Q  Fu F  Liang Y  Zhang J  Yang X  Wang T  Chong K  Wang XJ  Zuo J 《Plant physiology》2008,148(2):1042-1054
In plants, fatty acids are de novo synthesized predominantly in plastids from acetyl-coenzyme A. Although fatty acid biosynthesis has been biochemically well studied, little is known about the regulatory mechanisms of the pathway. Here, we show that overexpression of the Arabidopsis (Arabidopsis thaliana) LEAFY COTYLEDON1 (LEC1) gene causes globally increased expression of fatty acid biosynthetic genes, which are involved in key reactions of condensation, chain elongation, and desaturation of fatty acid biosynthesis. In the plastidial fatty acid synthetic pathway, over 58% of known enzyme-coding genes are up-regulated in LEC1-overexpressing transgenic plants, including those encoding three subunits of acetyl-coenzyme A carboxylase, a key enzyme controlling the fatty acid biosynthesis flux. Moreover, genes involved in glycolysis and lipid accumulation are also up-regulated. Consistent with these results, levels of major fatty acid species and lipids were substantially increased in the transgenic plants. Genetic analysis indicates that the LEC1 function is partially dependent on ABSCISIC ACID INSENSITIVE3, FUSCA3, and WRINKLED1 in the regulation of fatty acid biosynthesis. Moreover, a similar phenotype was observed in transgenic Arabidopsis plants overexpressing two LEC1-like genes of Brassica napus. These results suggest that LEC1 and LEC1-like genes act as key regulators to coordinate the expression of fatty acid biosynthetic genes, thereby representing promising targets for genetic improvement of oil production plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号