首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   37篇
  国内免费   1篇
  615篇
  2021年   10篇
  2019年   3篇
  2018年   12篇
  2017年   9篇
  2016年   9篇
  2015年   16篇
  2014年   13篇
  2013年   44篇
  2012年   33篇
  2011年   32篇
  2010年   20篇
  2009年   14篇
  2008年   19篇
  2007年   27篇
  2006年   37篇
  2005年   38篇
  2004年   31篇
  2003年   26篇
  2002年   18篇
  2001年   20篇
  2000年   23篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   11篇
  1991年   11篇
  1990年   14篇
  1989年   7篇
  1988年   14篇
  1987年   10篇
  1986年   6篇
  1985年   10篇
  1984年   4篇
  1983年   2篇
  1982年   8篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有615条查询结果,搜索用时 15 毫秒
41.
We tested the contribution of the small GTPase Rho and its downstream target p160ROCK during the early stages of axon formation in cultured cerebellar granule neurons. p160ROCK inhibition, presumably by reducing the stability of the cortical actin network, triggered immediate outgrowth of membrane ruffles and filopodia, followed by the generation of initial growth cone-ike membrane domains from which axonal processes arose. Furthermore, a potentiation in both the size and the motility of growth cones was evident, though the overall axon elongation rate remained stable. Conversely, overexpression of dominant active forms of Rho or ROCK was suggested to prevent initiation of axon outgrowth. Taken together, our data indicate a novel role for the Rho/ROCK pathway as a gate critical for the initiation of axon outgrowth and the control of growth cone dynamics.  相似文献   
42.
Action polymerization is essential for a variety of cellular processes including movement, cell division and shape change. The induction of actin polymerization requires the generation of free actin filament barbed ends, which results from the severing or uncapping of pre-existing actin filaments [1] [2], or de novo nucleation, initiated by the Arp2/3 complex [3] [4] [5] [6] [7]. Although little is known about the signaling pathways that regulate actin assembly, small GTPases of the Rho family appear to be necessary [8] [9] [10] [11]. In thrombin-stimulated platelets, the Rho family GTPase Rac1 induces actin polymerization by stimulating the uncapping of actin filament barbed ends [2]. The mechanism by which Rac regulates uncapping is unclear, however. We previously demonstrated that Rac interacts with a type I phosphatidylinositol-4-phosphate 5-kinase (PIP 5-kinase) in a GTP-independent manner [12] [13]. Because PIP 5-kinases synthesize phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), a lipid that dissociates capping proteins from the barbed ends of actin filaments [14] [15] [16], they are good candidates for mediating the effects of Rac on actin assembly. Here, we have identified the Rac-associated PIP 5-kinase as the PIP 5-kinase isoforms alpha and beta. When added to permeabilized platelets, PIP 5-kinase alpha induced actin filament uncapping and assembly. In contrast, a kinase-inactive PIP 5-kinase alpha mutant failed to induce actin assembly and blocked assembly stimulated by thrombin or Rac. Furthermore, thrombin- or Rac-induced actin polymerization was inhibited by a point mutation in the carboxyl terminus of Rac that disrupts PIP 5-kinase binding. These results demonstrate that PIP 5-kinase alpha is a critical mediator of thrombin- and Rac-dependent actin assembly.  相似文献   
43.
44.
The G protein-coupled receptor 119 (GPR119) is highly expressed in pancreatic β-cells. On activation, this receptor enhances the effect of glucose-stimulated insulin secretion (GSIS) via the elevation of intracellular cAMP concentrations. Although GPR119 agonists represent promising oral antidiabetic agents for the treatment of type 2 diabetes therapy, they suffer from the inability to adequately directly preserve β-cell function. To identify a new structural class of small-molecule GPR119 agonists with both GSIS and the potential to preserve β-cell function, we screened a library of synthetic compounds and identified a candidate molecule, AS1269574, with a 2,4,6-tri-substituted pyrimidine core. Here, we examined the preliminary in vitro and in vivo effects of AS1269574 on insulin secretion and glucose tolerance. AS1269574 had an EC50 value of 2.5 μM in HEK293 cells transiently expressing human GPR119 and enhanced insulin secretion in the mouse pancreatic β-cell line MIN-6 only under high-glucose (16.8 mM) conditions. This contrasted with the action of the sulfonylurea glibenclamide, which also induced insulin secretion under low-glucose conditions (2.8 mM). In in vivo studies, a single administration of AS1269574 to normal mice reduced blood glucose levels after oral glucose loading based on the observed insulin secretion profiles. Significantly, AS1269574 did not affect fed and fasting plasma glucose levels in normal mice. Taken together, these results suggest that AS1269574 represents a novel structural class of small molecule, orally administrable GPR119 agonists with GSIS and promising potential for the treatment of type 2 diabetes.  相似文献   
45.
Recent research has elucidated the positive ecological roles of large wood (LW) in fish-bearing channels. However, where logjams increase local flooding and bank erosion, LW has negative impacts on public safety and property protection. Although our understanding of reach-scale processes and patterns has increased dramatically in recent years, only a few studies have integrated this knowledge at the watershed scale. Here we review variations in LW dynamics along a gradient of watershed sizes. In small watersheds, a massive amount of LW, resulting from forest dynamics and hillslope processes, remains on the valley floor. These pieces may persist for several decades and are eventually transported during debris flows. In intermediate watersheds, LW is dominantly recruited by bank erosion from adjacent riparian areas. These pieces are continuously transported downstream with LW pieces that are supplied from the upstream watershed by floods because these channels have a greater width and depth than the length and diameter of the pieces, as well as a high stream power. This leads to fragmentation of the LW pieces, which increases their transportability. In large watersheds, LW pieces are frequently recruited at locations where the channel is adjacent to riparian forests. Floated LW pieces can accumulate along channels with wide floodplains. Storage in floodplains can lead to more rapid decay than in an anaerobic environment, resulting in the subsequent removal of LW pieces from the system. Our review presents a generalized view of LW processing at the watershed scale, and is relevant to ecosystem management, disaster prevention and the identification of knowledge gaps.  相似文献   
46.
47.
To identify the causes of the rapid expansion of the semi-emergent Phalaris arundinacea L. community in a nutrient-loaded river, we investigated the factors that determine the distribution of the Phalaris and other aquatic macrophyte communities and the shoot growth of P. arundinacea. The Phalaris community was distributed through areas with high organic nitrogen (Org-N), total phosphorus (T-P), PO4-P and suspended solids (SS) concentrations and low dissolved oxygen (DO). P. arundinacea shoots grow better in deep mud and high SS and T-P, all of which were strongly correlated with slower stream currents. Accordingly, although the concentration of total nitrogen constantly increased from 1985 to 1998, the determining nutrient for the expansion of the Phalaris community and P. arundinacea shoot growth stimulation was phosphorus rather than nitrogen. The Phalaris community increased rapidly between 1991 and 1996, when brief but prominent loadings of phosphorus were observed. We concluded that the Phalaris community was restricted due to phosphorus deficiency under nitrogen excess until 1991 and subsequently rapidly expanded over the channel due to the temporary excess phosphorus present during this period. Thereafter, the rapid expansion of the Phalaris community was maintained by the clogging effect of the floating mats formed by shoots and their remains of P. arundinacea, which results in slower currents. A slower current resulted in low DO, the sedimentation of degraded plant remains (high Org-N), and the adsorption of phosphorus by suspended matter (high SS and T-P). The anaerobic conditions caused by low oxygen and the accumulation of decomposable organic matter ensure the continuous development of the Phalaris community through the release of soluble phosphorus from the sediment.  相似文献   
48.
In this article, we focused on hummocky microtopography as a prominent feature of mires and explored the microenvironmental conditions suitable for alder seedling establishment. Japanese alder (Alnus japonica) forest is widely distributed in wetlands in northern Japan. However, because alder seedlings are rare in mires, alder population dynamics and conditions that favor the establishment of alder seedlings are still unknown. The study was conducted in northern Japan at a site in mesotrophic mire. We surveyed the seedling density, the microenvironmental conditions (light, litter cover, and soil quality), and the density of dispersed seeds in alder forest and in the adjacent herbaceous fen. In addition, we performed a laboratory experiment to examine the germination characteristics of alder. Seedlings grew only on hummocks in alder forest. The percentage of litter cover on hummocks was lower than in hollows, and the density of dispersed seeds in alder forest was much higher than in herbaceous fen. Seeds of Japanese alder germinated under both light and dark conditions, and the germination rate were high under light and high-temperature conditions. Our results suggest that litter cover may inhibit seedling establishment and hummocks that characterized by less litter cover are suitable place for the establishment of seedlings. We conclude that hummocky microtopography and abundant seed rain in the mire enable the establishment of Japanese alder seedlings.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号