首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   25篇
  2024年   1篇
  2022年   4篇
  2021年   9篇
  2020年   2篇
  2019年   6篇
  2018年   12篇
  2017年   9篇
  2016年   7篇
  2015年   13篇
  2014年   11篇
  2013年   24篇
  2012年   26篇
  2011年   28篇
  2010年   13篇
  2009年   11篇
  2008年   18篇
  2007年   23篇
  2006年   38篇
  2005年   32篇
  2004年   27篇
  2003年   17篇
  2002年   14篇
  2001年   12篇
  2000年   4篇
  1999年   10篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   4篇
  1990年   9篇
  1989年   7篇
  1988年   12篇
  1987年   7篇
  1986年   5篇
  1985年   1篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
排序方式: 共有463条查询结果,搜索用时 31 毫秒
141.
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.  相似文献   
142.
We describe the design, synthesis, and biological properties of a novel series of 7-substituted 6-nitro-3-oxoquinoxaline-2-carboxylic acids. After designing, studying the structure-activity relationships, and evaluating the properties of various compounds, we found that 7-heterocyclic-6-nitro-3-oxoquinoxaline-2-carboxylic acids that contain a substituted phenyl group linked through urethane at the 7 position possess good alpha-amino-3-hydroxy-5-methylisoxazole propionate receptor (AMPA-R) antagonistic activity. Among the compounds tested, compound 29p (GRA-293), which has a 4-carboxy group on the terminal phenyl moiety, exhibited high potency and selectivity for the AMPA-R in vitro and good neuroprotective efficacy in vivo. It also showed good aqueous solubility.  相似文献   
143.
Nectins, Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules, induce the activation of Cdc42 and Rac small G proteins, enhancing the formation of cadherin-based adherens junctions (AJs) and claudin-based tight junctions. Nectins recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then activates Cdc42 through FRG, a Cdc42-GDP/GTP exchange factor. We showed here that Rap1 small G protein was involved in the nectin-induced activation of Cdc42 and formation of AJs. Rap1 was recruited to the nectin-based cell-cell contact sites and locally activated through the c-Src-Crk-C3G signaling there. The activation of either c-Src or Rap1 alone was insufficient for and the activation of both molecules was essential for the activation of FRG. The activation of Rap1 was not necessary for the c-Src-mediated phosphorylation or recruitment of FRG. The inhibition of the Crk, C3G, or Rap1 signaling reduced the formation of AJs. These results indicate that Rap1 is activated by nectins through the c-Src-Crk-C3G signaling and involved in the nectin-induced, c-Src- and FRG-mediated activation of Cdc42 and formation of AJs.  相似文献   
144.
145.

Background  

Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq.  相似文献   
146.
147.
A series of diarylamide derivatives were synthesized and evaluated for their inhibitory activities against human coronary artery smooth muscle cells (SMCs) and human coronary artery endothelial cells (ECs). Compound 2w was superior to the lead compound, Tranilast, in terms of the potency of the activity and cell selectivity.  相似文献   
148.
A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 μM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1–2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 μM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene.  相似文献   
149.
Lateral flow tests also known as Immunochromatography (IC) is an antigen-detection method conducted on a nitrocellulose membrane that can be completed in less than 20 min. IC has been used as an important rapid test for clinical diagnosis and surveillance of influenza viruses, but the IC sensitivity is relatively low (approximately 60%) and the limit of detection (LOD) is as low as 10³ pfu per reaction. Recently, we reported an improved IC assay using antibodies conjugated with fluorescent beads (fluorescent immunochromatography; FLIC) for subtyping H5 influenza viruses (FLIC-H5). Although the FLIC strip must be scanned using a fluorescent reader, the sensitivity (LOD) is significantly improved over that of conventional IC methods. In addition, the antibodies which are specific against the subtypes of influenza viruses cannot be available for the detection of other subtypes when the major antigenicity will be changed. In this study, we established the use of FLIC to type seasonal influenza A and B viruses (FLIC-AB). This method has improved sensitivity to 100-fold higher than that of conventional IC methods when we used several strains of influenza viruses. In addition, FLIC-AB demonstrated the ability to detect influenza type A and influenza type B viruses from clinical samples with high sensitivity and specificity (Type A: sensitivity 98.7% (74/75), specificity 100% (54/54), Type B: sensitivity 100% (90/90), specificity 98.2% (54/55) in nasal swab samples) in comparison to the results of qRT-PCR. And furthermore, FLIC-AB performs better in the detection of early stage infection (under 13h) than other conventional IC methods. Our results provide new strategies to prevent the early-stage transmission of influenza viruses in humans during both seasonal outbreaks and pandemics.  相似文献   
150.
Autophagy is an evolutionarily conserved mechanism for the gross disposal of intracellular proteins in mammalian cells and dysfunction in this pathway has been associated with human disease. Although the serine threonine kinase Akt is suggested to play a role in this process, little is known about the molecular mechanisms by which Akt induces autophagy. Using a yeast two-hybrid screen, Phafin2 (EAPF or PLEKHF2), a lysosomal protein with a unique structure of N-terminal PH (pleckstrin homology) domain and C-terminal FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain was found to interact with Akt. A sucrose gradient fractionation experiment revealed that both Akt and Phafin2 co-existed in the same lysosome enriched fraction after autophagy induction. Confocal microscopic analysis and BiFC analysis demonstrated that both Akt and Phafin2 accumulate in the lysosome after induction of autophagy. BiFC analysis using PtdIns (3)P interaction defective mutant of Phafin2 demonstrated that lysosomal accumulation of the Akt-Phafin2 complex and subsequent induction of autophagy were lysosomal PtdIns (3)P dependent events. Furthermore, in murine macrophages, both Akt and Phafin2 were required for digestion of fluorescent bacteria and/or LPS-induced autophagy. Taken together, these findings establish that lysosomal accumulation of Akt and Phafin2 is a critical step in the induction of autophagy via an interaction with PtdIns (3)P.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号