全文获取类型
收费全文 | 57篇 |
免费 | 0篇 |
专业分类
57篇 |
出版年
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 2篇 |
2012年 | 3篇 |
2011年 | 5篇 |
2010年 | 1篇 |
2009年 | 3篇 |
2007年 | 1篇 |
2006年 | 1篇 |
2005年 | 1篇 |
2004年 | 3篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1987年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1977年 | 4篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1972年 | 2篇 |
1971年 | 2篇 |
排序方式: 共有57条查询结果,搜索用时 15 毫秒
21.
22.
M Onderci K Sahin N Sahin MF Gursu D Doerge FH Sarkar 《Archives of animal nutrition》2013,67(6):463-471
Genistein, a phytoestrogen found in soybeans, is a powerful antioxidant. We evaluated the effects of genistein supplementation on performance, carcass characteristics, levels of malondialdehyde (MDA), homocysteine, vitamins C, E, A in Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature of 34°C. Two hundred and forty Japanese quails (10 d old) were randomly assigned to eight treatment groups consisting of 10 replicates of three birds. The birds were kept in an environmental controlled room either for 24 h/d at 22°C with (thermoneutral, TN groups) or for 16 h/d at 22°C and for 8 h/d (09.00 am to 05.00 pm) at 34°C (heat stress, HS groups). Birds were fed either a basal (control) diet (TN and HS) or the basal diet supplemented with 200, 400 or 800 mg of genistein per kg of diet. Heat exposure decreased birds' performance when basal diet was fed. Increase in feed intake and body weight, and improvement of feed efficiency and carcass traits were found in genistein-supplemented quails reared under heat stress conditions. Growth rate and feed efficiency improved in quails reared under thermo-neutral conditions as well. Concentration of serum vitamins C, E, and A increased in supplemented birds reared at high temperature, while non-significant changes occurred in TN groups. With genistein supplementation homocysteine levels in serum and MDA levels in serum and liver decreased in all birds of both TN and HS groups. Effects of genistein were relatively greater in heat-stressed quails than in quails kept under thermo-neutral conditions. Results of the present study suggest that supplementation with genistein can be considered to be protective by reducing the negative effects of oxidative stress induced by heat stress in quail. 相似文献
23.
24.
Schmidt A Wiesner B Weisshart K Schulz K Furkert J Lamprecht B Rosenthal W Schülein R 《Traffic (Copenhagen, Denmark)》2009,10(1):2-15
The heptahelical G protein-coupled receptors (GPCRs) are internalized following agonist treatment and either recycle rapidly to the plasma membrane or enter the lysosomal degradation pathway. Many conventional GPCR recycling assays suffer from the fact that receptors arriving from the secretory pathway may interfere with recycling receptors. In this study, we introduce a new methodology to study post-endocytotic GPCR trafficking using fusions with the recently cloned Kaede protein. In contrast to the widely used green fluorescent protein, the fluorescence of Kaede can be converted from green to red using ultraviolet irradiation. Our methodology allows to study recycling of GPCRs microscopically in real-time bypassing problems with secretory pathway receptors. Initially, receptors are internalized using an agonist. Fluorescence signals in endosomes are switched, and trafficking of the receptors to the plasma membrane can be easily visualized by monitoring their new fluorescence. Using this methodology, we show that the corticotropin-releasing factor receptor type 1 belongs to the family of recycling GPCRs. Moreover, we demonstrate by fluorescence correlation spectroscopy that Kaede does not oligomerize when fused to membrane proteins, representing an additional advantage of this technique. The Kaede technology may be a powerful tool to study membrane protein trafficking in general. 相似文献
25.
Monocrotaline (MCT) is a hepatotoxic pyrrolizidine alkaloid that is derived from plants; exposure may occur by consumption of contaminated grains, herbal teas and medicines. MCT can cause liver damage. We investigated the antioxidant effects of selenium (Se) and vitamin E against the toxic effects of MCT. Female Wistar albino rats were divided into four groups: a control group, an MCT group, an MCT + Se group, and an MCT + vitamin E group. Liver tissues were harvested, fixed, processed to paraffin and sections were cut. Anti-von Willebrand factor (vWF) immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL), and hematoxylin and eosin staining were performed. Serum and liver tissue glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx) levels were measured. Histopathological and TUNEL data showed significantly increased liver damage in the MCT group compared to controls. Histopathological and TUNEL staining indicated significant improvements in the MCT + vitamin E and MCT + Se groups compared to the MCT group. MCT significantly reduced the serum GSH level and GPx activity, and liver GPx activity. Biochemical data indicated a significant improvement in serum GSH level in the MCT + vitamin E group compared to the MCT group. We suggest that vitamin E and Se afford limited protection against MCT hepatotoxicity. 相似文献
26.
The antimicrobial activity of two cyanobacterial exometabolites, norharmane (9H-pyrido(3,4-b)indole) and 4,4'-dihydroxybiphenyl, was determined in suspension assays. Good anticyanobacterial activities (concentrations of 8-80 microg ml(-1)) and moderate antibacterial (16-160 microg ml(-1)) and antifungal (32-40 microg ml(-1)) activities were found for both compounds. The natural function as allelopathic chemicals and a possible applicability as antifouling agents or leads for the development of new antifouling chemicals are discussed. 相似文献
27.
Anke Teichmann Arthur Gibert André Lampe Paul Grzesik Claudia Rutz Jens Furkert Jan Schmoranzer Gerd Krause Burkhard Wiesner Ralf Schülein 《The Journal of biological chemistry》2014,289(35):24250-24262
G protein-coupled receptors (GPCRs) represent the most important drug targets. Although the smallest functional unit of a GPCR is a monomer, it became clear in the past decades that the vast majority of the receptors form dimers. Only very recently, however, data were presented that some receptors may in fact be expressed as a mixture of monomers and dimers and that the interaction of the receptor protomers is dynamic. To date, equilibrium measurements were restricted to the plasma membrane due to experimental limitations. We have addressed the question as to where this equilibrium is established for the corticotropin-releasing factor receptor type 1. By developing a novel approach to analyze single molecule fluorescence cross-correlation spectroscopy data for intracellular membrane compartments, we show that the corticotropin-releasing factor receptor type 1 has a specific monomer/dimer equilibrium that is already established in the endoplasmic reticulum (ER). It remains constant at the plasma membrane even following receptor activation. Moreover, we demonstrate for seven additional GPCRs that they are expressed in specific but substantially different monomer/dimer ratios. Although it is well known that proteins may dimerize in the ER in principle, our data show that the ER is also able to establish the specific monomer/dimer ratios of GPCRs, which sheds new light on the functions of this compartment. 相似文献
28.
Beyermann M Rothemund S Heinrich N Fechner K Furkert J Dathe M Winter R Krause E Bienert M 《The Journal of biological chemistry》2000,275(8):5702-5709
The conformational freedom of single-chain peptide hormones, such as the 41-amino acid hormone corticotropin releasing factor (CRF), is a major obstacle to the determination of their biologically relevant conformation, and thus hampers insights into the mechanism of ligand-receptor interaction. Since N- and C-terminal truncations of CRF lead to loss of biological activity, it has been thought that almost the entire peptide is essential for receptor activation. Here we show the existence of two segregated receptor binding sites at the N and C termini of CRF, connection of which is essential for receptor binding and activation. Connection of the two binding sites by highly flexible epsilon-aminocaproic acid residues resulted in CRF analogues that remained full, although weak agonists (EC(50): 100-300 nM) independent of linker length. Connection of the two sites by an appropriate helical peptide led to a very potent analogue, which adopted, in contrast to CRF itself, a stable, monomer conformation in aqueous solution. Analogues in which the two sites were connected by helical linkers of different lengths were potent agonists; their significantly different biopotencies (EC(50): 0.6-50 nM), however, suggest the relative orientation between the two binding sites rather than the maintenance of a distinct distance between them to be essential for a high potency. 相似文献
29.
Olga Pivovarova Christian von Loeffelholz Iryna Ilkavets Carsten Sticht Sergei Zhuk Veronica Murahovschi Sonja Lukowski Stephanie D?cke Jennifer Kriebel Tonia de las Heras Gala Anna Malashicheva Anna Kostareva Johan F Lock Martin Stockmann Harald Grallert Norbert Gretz Steven Dooley Andreas FH Pfeiffer Natalia Rudovich 《Cell cycle (Georgetown, Tex.)》2015,14(14):2293-2300
30.
Kleinau G Hoyer I Kreuchwig A Haas AK Rutz C Furkert J Worth CL Krause G Schülein R 《The Journal of biological chemistry》2011,286(29):25859-25871
Transmembrane helices (TMHs) 5 and 6 are known to be important for signal transduction by G-protein-coupled receptors (GPCRs). Our aim was to characterize the interface between TMH5 and TMH6 of the thyrotropin receptor (TSHR) to gain molecular insights into aspects of signal transduction and regulation. A proline at TMH5 position 5.50 is highly conserved in family A GPCRs and causes a twist in the helix structure. Mutation of the TSHR-specific alanine (Ala-5935.50) at this position to proline resulted in a 20-fold reduction of cell surface expression. This indicates that TMH5 in the TSHR might have a conformation different from most other family A GPCRs by forming a regular α-helix. Furthermore, linking our own and previous data from directed mutagenesis with structural information led to suggestions of distinct pairs of interacting residues between TMH5 and TMH6 that are responsible for stabilizing either the basal or the active state. Our insights suggest that the inactive state conformation is constrained by a core set of polar interactions among TMHs 2, 3, 6, and 7 and in contrast that the active state conformation is stabilized mainly by non-polar interactions between TMHs 5 and 6. Our findings might be relevant for all family A GPCRs as supported by a statistical analysis of residue properties between the TMHs of a vast number of GPCR sequences. 相似文献