首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   105篇
  2022年   10篇
  2021年   15篇
  2020年   8篇
  2019年   13篇
  2018年   12篇
  2017年   11篇
  2016年   20篇
  2015年   32篇
  2014年   35篇
  2013年   47篇
  2012年   60篇
  2011年   56篇
  2010年   37篇
  2009年   27篇
  2008年   38篇
  2007年   45篇
  2006年   34篇
  2005年   52篇
  2004年   49篇
  2003年   49篇
  2002年   40篇
  2001年   24篇
  2000年   13篇
  1999年   24篇
  1998年   12篇
  1997年   13篇
  1996年   20篇
  1995年   10篇
  1994年   11篇
  1993年   4篇
  1992年   10篇
  1991年   10篇
  1990年   19篇
  1989年   12篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   17篇
  1984年   16篇
  1983年   6篇
  1982年   5篇
  1979年   9篇
  1978年   5篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
  1966年   5篇
排序方式: 共有1010条查询结果,搜索用时 31 毫秒
21.
22.
Phylogenetic distance among host species represents a proxy for host traits that act as biotic filters to shape host‐associated microbiome community structure. However, teasing apart potential biotic assembly mechanisms, such as host specificity or local species interactions, from abiotic factors, such as environmental specificity or dispersal barriers, in hyperdiverse, horizontally transmitted microbiomes remains a challenge. In this study, we tested whether host phylogenetic relatedness among 18 native Asteraceae plant species and spatial distance between replicated plots in a common garden affects foliar fungal endophyte (FFE) community structure. We found that FFE community structure varied significantly among host species, as well as host tribes, but not among host subfamilies. However, FFE community dissimilarity between host individuals was not significantly correlated with phylogenetic distance between host species. There was a significant effect of spatial distance among host individuals on FFE community dissimilarity within the common garden. The significant differences in FFE community structure among host species, but lack of a significant host phylogenetic effect, suggest functional differences among host species not accounted for by host phylogenetic distance, such as metabolic traits or phenology, may drive FFE community dissimilarity. Overall, our results indicate that host species identity and the spatial distance between plants can determine the similarity of their microbiomes, even across a single experimental field, but that host phylogeny is not closely tied to FFE community divergence in native Asteraceae.  相似文献   
23.
Floral nectar is a sugary solution produced by nectaries to attract and reward pollinators. Nectar metabolites, such as sugars, are synthesized within the nectary during secretion from both pre-stored and direct phloem-derived precursors. In addition to sugars, nectars contain nitrogenous compounds such as amino acids; however, little is known about the role(s) of nitrogen (N) compounds in nectary function. In this study, we investigated N metabolism in Cucurbita pepo (squash) floral nectaries in order to understand how various N-containing compounds are produced and determine the role of N metabolism in nectar secretion. The expression and activity of key enzymes involved in primary N assimilation, including nitrate reductase (NR) and alanine aminotransferase (AlaAT), were induced during secretion in C. pepo nectaries. Alanine (Ala) accumulated to about 35% of total amino acids in nectaries and nectar during peak secretion; however, alteration of vascular nitrate supply had no impact on Ala accumulation during secretion, suggesting that nectar(y) amino acids are produced by precursors other than nitrate. In addition, nitric oxide (NO) is produced from nitrate and nitrite, at least partially by NR, in nectaries and nectar. Hypoxia-related processes are induced in nectaries during secretion, including lactic acid and ethanolic fermentation. Finally, treatments that alter nitrate supply affect levels of hypoxic metabolites, nectar volume and nectar sugar composition. The induction of N metabolism in C. pepo nectaries thus plays an important role in the synthesis and secretion of nectar sugar.  相似文献   
24.
In this perspective, we discuss the physiological roles of Na and K channels, emphasizing the importance of the K channel for cellular homeostasis in animal cells and of Na and K channels for cellular signaling. We consider the structural basis of Na and K channel gating in light of recent structural and electrophysiological findings.  相似文献   
25.
Anthropogenic features increasingly affect ecological processes with increasing human demand for natural resources. Such effects also have the potential to vary depending on the sex and age of an individual because of inherent behavioral and life experience differences. For the lesser prairie-chicken (Tympanuchus pallidicinctus), studies on male survival are limited because most previous research has been focused on females. To better understand patterns of lesser prairie-chicken survival in habitat with varying levels of anthropogenic infrastructure associated with oil and natural gas development, we monitored survival of 178 radio-tagged male and female lesser prairie-chickens in eastern New Mexico, USA, from 2013 to 2015. We examined the relationships of shrub cover, proximity to and density of anthropogenic features (i.e., utility poles), displacement of natural vegetation by anthropogenic features (i.e., area of roads and well pads), and individual demographics (i.e., sex, age) with lesser prairie-chicken survival. Furthermore, we categorized the probable cause of mortality and examined its relationship with oil and gas development intensity (indexed by utility pole density) within 1,425 m of an individual's mortality site or final observed location. We predicted that survival would be lower for individuals exposed to greater levels of anthropogenic features, and that males and subadults would be more negatively affected than females and adults because of increased exposure to predators during the lekking season and naiveté. Relationships between survival and utility pole density, sex, and age were supported in our top-ranked models, whereas models including other anthropogenic and natural features (i.e., roads, well pads, shrub cover) received little support. We predicted a substantial decrease in adult and subadult male survival with increasing densities of utility poles. The relationship between survival and utility pole density for females was weaker and not as clearly supported as for males. We did not find a detectable difference in utility pole counts among probable mortality causes. Our findings highlight the importance of including male lesser prairie-chickens in research and conservation planning, and the negative effect that high densities of anthropogenic features can have on lesser prairie-chicken survival. © 2021 The Wildlife Society.  相似文献   
26.

Purpose

To demonstrate a method of generating patient-specific, biologically-guided radiotherapy dose plans and compare them to the standard-of-care protocol.

Methods and Materials

We integrated a patient-specific biomathematical model of glioma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated radiation therapy optimization to construct individualized, biologically-guided plans for 11 glioblastoma patients. Patient-individualized, spherically-symmetric simulations of the standard-of-care and optimized plans were compared in terms of several biological metrics.

Results

The integrated model generated spatially non-uniform doses that, when compared to the standard-of-care protocol, resulted in a 67% to 93% decrease in equivalent uniform dose to normal tissue, while the therapeutic ratio, the ratio of tumor equivalent uniform dose to that of normal tissue, increased between 50% to 265%. Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized plans would have a significant impact on delaying tumor progression, with increases from 21% to 105% for 9 of 11 patients.

Conclusions

Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for radiation therapy generated biologically-guided doses that decreased normal tissue EUD and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma.  相似文献   
27.
Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.  相似文献   
28.
29.
The maintenance of gene flow in species that have experienced population contractions and are geographically fragmented is important to the maintenance of genetic variation and evolutionary potential; thus, gene flow is also important to conservation and management of these species. For example, the Reddish Egret (Egretta rufescens) has recovered after severe population reductions during the 19th and 20th centuries, but population numbers remain below historical levels. In this study, we characterized gene flow among management units of the Reddish Egret by using ten nuclear microsatellite markers and part of the mitochondrial (mtDNA) control region from 176 nestlings captured at eight localities in Mexico (Baja California, Chiapas, Tamaulipas, and Yucatan), the USA (Texas, Louisiana, and Florida), and the Bahamas. We found evidence of population structure and that males disperse more often and across longer distances compared with females, which is congruent with previous banding and telemetry data. The maternally inherited mtDNA and biparentally inherited microsatellite data supported slightly different MU models; however, when interpreted together, a four MU model that considered population structure and geographic proximity was most optimal. Namely, MU 1 (Baja California); MU 2 (Chiapas); MU 3 (Yucatan, Tamaulipas, Texas, and Louisiana); and MU 4 (Florida and the Bahamas). Regions outside our sampled localities (e.g., the Greater Antilles and South America) require additional sampling to fully understand gene flow and movement of individuals across the species’ entire range. However, the four MUs we have defined group nesting localities into genetically similar subpopulations, which can guide future management plans.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号