首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2555篇
  免费   234篇
  国内免费   1篇
  2023年   13篇
  2022年   32篇
  2021年   73篇
  2020年   36篇
  2019年   36篇
  2018年   54篇
  2017年   35篇
  2016年   71篇
  2015年   129篇
  2014年   137篇
  2013年   175篇
  2012年   166篇
  2011年   189篇
  2010年   93篇
  2009年   79篇
  2008年   131篇
  2007年   127篇
  2006年   101篇
  2005年   85篇
  2004年   95篇
  2003年   95篇
  2002年   102篇
  2001年   38篇
  2000年   50篇
  1999年   46篇
  1998年   23篇
  1996年   20篇
  1995年   20篇
  1993年   15篇
  1992年   32篇
  1991年   24篇
  1990年   24篇
  1989年   36篇
  1988年   28篇
  1987年   20篇
  1986年   28篇
  1985年   22篇
  1984年   14篇
  1983年   17篇
  1981年   19篇
  1980年   13篇
  1979年   15篇
  1978年   19篇
  1976年   18篇
  1975年   17篇
  1974年   20篇
  1973年   18篇
  1972年   12篇
  1970年   15篇
  1968年   12篇
排序方式: 共有2790条查询结果,搜索用时 15 毫秒
961.
Innervation of nociceptive nerve fibres into the normally aneural nucleus pulposus (NP) of the intervertebral disc (IVD) occurs during degeneration resulting in discogenic back pain. The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which are associated with stimulation of axonal outgrowth and nociception by neuronal cells, are both expressed by NP cells, with BDNF levels increasing with disease severity. However the mechanism of interaction between human NP cells and neural cells has yet to be fully elucidated. Therefore the aim of this study was to determine whether non-degenerate or degenerate human NP cells inhibit or stimulate neural outgrowth and whether any outgrowth is mediated by NGF or BDNF. Human NP cells from non-degenerate and degenerate IVD were cultured in alginate beads then co-cultured for 48 hours with human SH-SY5Y neuroblastoma cells. Co-culture of non-degenerate NP cells with neural cells resulted in both an inhibition of neurite outgrowth and reduction in percentage of neurite expressing cells. Conversely co-culture with degenerate NP cells resulted in an increase in both neurite length and percentage of neurite expressing cells. Addition of anti-NGF to the co-culture with degenerate cells resulted in a decrease in percentage of neurite expressing cells, while addition of anti-BDNF resulted in a decrease in both neurite length and percentage of neurite expressing cells. Our findings show that while non-degenerate NP cells are capable of inhibiting neurite outgrowth from human neural cells, degenerate NP cells stimulate outgrowth. Neurotrophin blocking studies demonstrated that both NGF and BDNF, secreted by degenerate NP cells, may play a role in this stimulation with BDNF potentially playing the predominant role. These findings suggest that NP cells are capable of regulating nerve ingrowth and that neoinnervation occurring during IVD degeneration may be stimulated by the NP cells themselves.  相似文献   
962.
Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea''s appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.  相似文献   
963.
Two outstanding unknowns in the biology of photoreceptors are the molecular determinants of cell size, which is remarkably uniform among mammalian species, and the mechanisms of rod cell death associated with inherited neurodegenerative blinding diseases such as retinitis pigmentosa. We have addressed both questions by performing an in vivo titration with rhodopsin gene copies in genetically engineered mice that express only normal rhodopsin or an autosomal dominant allele, encoding rhodopsin with a disease-causing P23H substitution. The results reveal that the volume of the rod outer segment is proportional to rhodopsin gene expression; that P23H-rhodopsin, the most common rhodopsin gene disease allele, causes cell death via a dominant-negative mechanism; and that long term survival of rod cells carrying P23H-rhodopsin can be achieved by increasing the levels of wild type rhodopsin. These results point to promising directions in gene therapy for autosomal dominant neurodegenerative diseases caused by dominant-negative mutations.  相似文献   
964.

Background

In vivo studies of high dose radiation-induced crypt and intestinal stem cell (ISC) loss and subsequent regeneration are typically restricted to 5–8 days after radiation due to high mortality and immune failure. This study aimed to develop murine radiation models of complete crypt loss that permit longer-term studies of ISC and crypt regeneration, repair and normalization of the intestinal epithelium.

Methods

In C57Bl/6J mice, a predetermined small intestinal segment was exteriorized and exposed to 14Gy-radiation, while a lead shield protected the rest of the body from radiation. Sham controls had segment exteriorization but no radiation. Results were compared to C57Bl/6J mice given 14 Gy-abdominal radiation. Effects of elemental liquid diet feeding from the day prior to radiation until day 7 post-radiation were assessed in both models. Body weight and a custom-developed health score was assessed every day until day 21 post-radiation. Intestine was assessed histologically.

Results

At day 3 after segment radiation, complete loss of crypts occurred in the targeted segment, while adjacent and remaining intestine in segment-radiated mice, and entire intestine of sham controls, showed no detectable epithelial damage. Liquid diet feeding was required for survival of mice after segment radiation. Liquid diet significantly improved survival, body weight recovery and normalization of intestinal epithelium after abdominal radiation. Mice given segment radiation combined with liquid diet feeding showed minimal body weight loss, increased food intake and enhanced health score.

Conclusions

The segment radiation method provides a useful model to study ISC/crypt loss and long-term crypt regeneration and epithelial repair, and may be valuable for future application to ISC transplantation or to genetic mutants that would not otherwise survive radiation doses that lead to complete crypt loss. Liquid diet is a simple intervention that improves survival and facilitates long-term studies of intestine in mice after high dose abdominal or segment radiation.  相似文献   
965.
Tegobuvir (TGV) is a novel non-nucleoside inhibitor (NNI) of HCV RNA replication with demonstrated antiviral activity in patients with genotype 1 chronic HCV infection. The mechanism of action of TGV has not been clearly defined despite the identification of resistance mutations mapping to the NS5B polymerase region. TGV does not inhibit NS5B enzymatic activity in biochemical assays in vitro, suggesting a more complex antiviral mechanism with cellular components. Here, we demonstrate that TGV exerts anti-HCV activity utilizing a unique chemical activation and subsequent direct interaction with the NS5B protein. Treatment of HCV subgenomic replicon cells with TGV results in a modified form of NS5B with a distinctly altered mobility on a SDS-PAGE gel. Further analysis reveals that the aberrantly migrating NS5B species contains the inhibitor molecule. Formation of this complex does not require the presence of any other HCV proteins. The intensity of the aberrantly migrating NS5B species is strongly dependent on cellular glutathione levels as well as CYP 1A activity. Furthermore analysis of NS5B protein purified from a heterologous expression system treated with TGV by mass spectrometry suggests that TGV undergoes a CYP- mediated intracellular activation step and the resulting metabolite, after forming a glutathione conjugate, directly and specifically interacts with NS5B. Taken together, these data demonstrate that upon metabolic activation TGV is a specific, covalent inhibitor of the HCV NS5B polymerase and is mechanistically distinct from other classes of the non-nucleoside inhibitors (NNI) of the viral polymerase.  相似文献   
966.
967.
Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In this study, when TGFβ1 and TNFα were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFα and not the TGFβ1 that induced the fibroblast-like morphology changes. TNFα also caused the increase in Claudin-1 gene expression and protein levels in Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of TNFα-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFα-induced molecular functional networks related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFα-induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be helpful in developing novel therapeutic strategies.  相似文献   
968.
Lau BW  Lee JC  Li Y  Fung SM  Sang YH  Shen J  Chang RC  So KF 《PloS one》2012,7(4):e33374
Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of infertility and sexual dysfunction. However, there is still a scarcity of experimental evidence to support the pro-sexual effect of wolfberry. The aim of this study is to determine the effect of Lycium barbarum polysaccharides (LBP) on male sexual behavior of rats. Here we report that oral feeding of LBP for 21 days significantly improved the male copulatory performance including increase of copulatory efficiency, increase of ejaculation frequency and shortening of ejaculation latency. Furthermore, sexual inhibition caused by chronic corticosterone was prevented by LBP. Simultaneously, corticosterone suppressed neurogenesis in subventricular zone and hippocampus in adult rats, which could be reversed by LBP. The neurogenic effect of LBP was also shown in vitro. Significant correlation was found between neurogenesis and sexual performance, suggesting that the newborn neurons are associated with reproductive successfulness. Blocking neurogenesis in male rats abolished the pro-sexual effect of LBP. Taken together, these results demonstrate the pro-sexual effect of LBP on normal and sexually-inhibited rats, and LBP may modulate sexual behavior by regulating neurogenesis.  相似文献   
969.
970.

Background

Injury and intestinal inflammation trigger wound healing responses that can restore mucosal architecture but if chronic, can promote intestinal fibrosis. Intestinal fibrosis is a major complication of Crohn’s disease. The cellular and molecular basis of mucosal healing and intestinal fibrosis are not well defined and better understanding requires well characterized mouse models.

Methods

FVB-N wild type mice and C57BL6 procollagen α1(I)-GFP reporter mice were given one (DSS1) or two (DSS2) cycles of 3% DSS (5 days/cycle) followed by 7 days recovery. Histological scoring of inflammation and fibrosis were performed at DSS1, DSS1+3, DSS1+7, DSS2, DSS2+3, and DSS2+7. Procollagen α1(I)-GFP activation was assessed in DSS and also TNBS models by whole colon GFP imaging and fluorescence microscopy. Colocalization of GFP with α-smooth muscle actin (α-SMA) or vimentin was examined. GFP mRNA levels were tested for correlation with endogenous collagen α1(I) mRNA.

Results

Males were more susceptible to DSS-induced disease and mortality than females. In FVB-N mice one DSS cycle induced transient mucosal inflammation and fibrosis that resolved by 7 days of recovery. Two DSS cycles induced transmural inflammation and fibrosis in a subset of FVB-N mice but overall, did not yield more consistent, severe or sustained fibrosis. In C57BL6 mice, procollagen α1(I)-GFP reporter was activated at the end of DSS1 and through DSS+7 with more dramatic and transmural activation at DSS2 through DSS2+7, and in TNBS treated mice. In DSS and TNBS models GFP reporter expression localized to vimentin+ cells and much fewer α-SMA+ cells. GFP mRNA strongly correlated with collagen α1(I) mRNA.

Conclusions

One DSS cycle in FVB-N mice provides a model to study mucosal injury and subsequent mucosal healing. The procollagen α1(I)-GFP transgenic provides a useful model to study activation of a gene encoding a major extracellular matrix protein during acute or chronic experimental intestinal inflammation and fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号