首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   115篇
  国内免费   2篇
  2022年   7篇
  2021年   20篇
  2020年   10篇
  2018年   14篇
  2017年   9篇
  2016年   21篇
  2015年   47篇
  2014年   39篇
  2013年   51篇
  2012年   58篇
  2011年   54篇
  2010年   42篇
  2009年   31篇
  2008年   52篇
  2007年   50篇
  2006年   45篇
  2005年   29篇
  2004年   36篇
  2003年   32篇
  2002年   41篇
  2001年   34篇
  2000年   43篇
  1999年   29篇
  1998年   16篇
  1997年   8篇
  1996年   11篇
  1995年   10篇
  1993年   8篇
  1992年   24篇
  1991年   14篇
  1990年   16篇
  1989年   23篇
  1988年   18篇
  1987年   14篇
  1986年   23篇
  1985年   17篇
  1984年   7篇
  1983年   13篇
  1981年   15篇
  1980年   10篇
  1979年   13篇
  1978年   12篇
  1977年   8篇
  1976年   13篇
  1975年   11篇
  1974年   13篇
  1973年   15篇
  1972年   6篇
  1971年   6篇
  1968年   8篇
排序方式: 共有1175条查询结果,搜索用时 15 毫秒
111.
Chromogranin A (CHGA) plays a fundamental role in the biogenesis of catecholamine secretory granules. Changes in storage and release of CHGA in clinical and experimental hypertension prompted us to study whether genetic variation at the CHGA locus might contribute to alterations in autonomic function, and hence hypertension and its target organ consequences such as hypertensive renal disease (nephrosclerosis). Systematic polymorphism discovery across the human CHGA locus revealed both common and unusual variants in both the open reading frame and such regulatory regions as the proximal promoter and 30-UTR. In chromaffin cell-transfected CHGA 30-UTR and promoter/luciferase reporter plasmids, the functional consequences of the regulatory/non-coding allelic variants were documented. Variants in both the proximal promoter and the 30-UTR displayed statistical associations with hypertension. Genetic variation in the proximal CHGA promoter predicted glomerular filtration rate in healthy twins. However, for hypertensive renal damage, both end-stage renal disease and rate of progression of earlier disease were best predicted by variants in the 30-UTR. Finally, mechanistic studies were undertaken initiated by the clue that CHGA promoter variation predicted circulating endothelin-1. In cultured endothelial cells, CHGA triggered co-release of not only the vasoconstrictor and pro-fibrotic endothelin-1, but also the pro-coagulant von Willebrand Factor and the pro-angiogenic angiopoietin-2. These findings, coupled with stimulation of endothelin-1 release from glomerular capillary endothelial cells by CHGA, suggest a plausible mechanism whereby genetic variation at the CHGA locus eventuates in alterations in human renal function. These results document the consequences of genetic variation at the CHGA locus for cardiorenal disease and suggest mechanisms whereby such variation achieves functional effects.  相似文献   
112.
Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era.  相似文献   
113.
AIMS: Skim milk agar was developed to investigate extracellular cell-bound proteinase in yogurt cultures, Streptococcus thermophilus and Lactobacillus bulgaricus. METHODS AND RESULTS: The Lact. bulgaricus cultures produced more extracellular cell-bound proteinase than did Strep. thermophilus cultures. Strong positive correlations between the size of the exopolysaccharide (EPS) layer and extracellular cell-bound proteinase were found for both Streptococcus and Lactobacillus cultures. CONCLUSION: Strong positive linear relationships existed between the EPS size and colony size and the diameter of clear zone and colony size for Streptococcus cultures, whereas weak positive linear relationships were observed for Lactobacillus cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: These data are useful to validate the relationship between extracellular proteinase and the EPS size of LAB. Also, a convenient medium to detect the presence of extracellular cell-bound proteinase of LAB is valuable for dairy industries.  相似文献   
114.
Anaerobic reductive dehalogenation by Dehalococcoides spp. is an ideal system for studying functional diversity of closely related strains of bacteria. In Dehalococcoides spp., reductive dehalogenases (RDases) are key respiratory enzymes involved in the anaerobic detoxification of halogenated compounds at contaminated sites globally. Although housekeeping genes sequenced from Dehalococcoides spp. are >85% identical at the amino acid level, different strains are capable of dehalogenating diverse ranges of compounds, depending largely on the suite of RDase genes that each strain harbors and expresses. We identified RDase proteins that corresponded to known functions in four characterized cultures and predicted functions in an uncharacterized Dehalococcoides-containing mixed culture. Homologues within RDase subclusters containing PceA, TceA, and VcrA were among the most frequently identified proteins. Several additional proteins, including a formate dehydrogenase-like protein (Fdh), had high coverage in all strains and under all growth conditions.  相似文献   
115.
116.
The mucosal folding is a phenomenon observed for some biological tissues, including the pulmonary airway and gastrointestinal tract. In order to understand the mechanism of the formation of mucosal folding, a thick-walled two-layered cylindrical mathematical model was developed to investigate the buckling behavior under the external pressure and circular outer boundary condition. With the finite element method, the validity and accuracy of the proposed model was verified. The results showed that the fold number was in the range of 4-6, which was agreed with the experimental observation for the mucosal folding of a porcine esophagus. The fold number was found to decrease with the increase in the ratio of the inner to outer material stiffness. The increase in the thickness of inner layer also caused a slight declination of the fold number. Since the effects of both the material and geometrical nonlinearities have been accounted for, this model is more general to be used for the prediction of the buckling behavior of the layered structure with a wide range of thickness ratios and/or stiffness ratios.  相似文献   
117.
Zhou JY  Hu YQ  Fung WK 《Heredity》2007,98(2):85-91
Using data from families in which marker genotypes are known for the father, the mother and the affected offspring, a simple statistic for testing for imprinting effects is developed. The statistic considers whether the expected number of families in which the father carries more copies of a particular marker allele than the mother is equal to the expected number of families in which the mother carries more copies of the allele than the father. The proposed parent-of-origin effects test statistic (POET) is shown to be normally distributed and can be employed to test for imprinting in situations where the marker locus need not be a disease susceptibility locus and where the female and male recombination fractions are sex-specific. A simulation study is conducted to characterize the power of the POET and other properties, and its results show that it is appropriate to employ the POET.  相似文献   
118.
The hedgehog signaling network regulates pattern formation, proliferation, cell fate and stem/progenitor cell self-renewal in many organs. Altered hedgehog signaling is implicated in 20-25% of all cancers, including breast cancer. We demonstrated previously that heterozygous disruption of the gene encoding the patched-1 (PTCH1) hedgehog receptor, a negative regulator of smoothened (Smo) in the absence of ligand, led to mammary ductal dysplasia in virgin mice. We now show that expression of activated human SMO (SmoM2) under the mouse mammary tumor virus (MMTV) promoter in transgenic mice leads to increased proliferation, altered differentiation, and ductal dysplasias distinct from those caused by Ptch1 heterozygosity. SMO activation also increased the mammosphere-forming efficiency of primary mammary epithelial cells. However, limiting-dilution transplantation showed a decrease in the frequency of regenerative stem cells in MMTV-SmoM2 epithelium relative to wild type, suggesting enhanced mammosphere-forming efficiency was due to increased survival or activity of division-competent cell types under anchorage-independent growth conditions, rather than an increase in the proportion of regenerative stem cells per se. In human clinical samples, altered hedgehog signaling occurs early in breast cancer development, with PTCH1 expression reduced in approximately 50% of ductal carcinoma in situ (DCIS) and invasive breast cancers (IBC). Conversely, SMO is ectopically expressed in 70% of DCIS and 30% of IBC. Surprisingly, in both human tumors and MMTV-SmoM2 mice, SMO rarely colocalized with the Ki67 proliferation marker. Our data suggest that altered hedgehog signaling may contribute to breast cancer development by stimulating proliferation, and by increasing the pool of division-competent cells capable of anchorage-independent growth.  相似文献   
119.
120.
The human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) share a unique mechanism of colonization that results from the concerted action of effector proteins translocated into the host cell by a type III secretion system (T3SS). EPEC and EHEC not only induce characteristic attaching and effacing (A/E) lesions, but also subvert multiple host cell signalling pathways during infection. Our understanding of the mechanisms by which A/E pathogens hijack host cell signalling has advanced dramatically in recent months with the identification of novel activities for many effectors. In addition to further characterization of established effectors (Tir, EspH and Map), new effectors have emerged as important mediators of virulence through activities such as mimicry of Rho guanine nucleotide exchange factors (Map and EspM), inhibition of apoptosis (NleH and NleD), interference with inflammatory signalling pathways (NleB, NleC, NleE and NleH) and phagocytosis (EspF, EspH and EspJ). The findings have highlighted the multifunctional nature of the effectors and their ability to participate in redundant, synergistic or antagonistic relationships, acting in a co-ordinated spatial and temporal manner on different host organelles and cellular pathways during infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号