首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   63篇
  955篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   17篇
  2015年   22篇
  2014年   32篇
  2013年   42篇
  2012年   41篇
  2011年   37篇
  2010年   36篇
  2009年   36篇
  2008年   35篇
  2007年   41篇
  2006年   56篇
  2005年   40篇
  2004年   45篇
  2003年   43篇
  2002年   38篇
  2001年   28篇
  2000年   51篇
  1999年   28篇
  1998年   23篇
  1997年   9篇
  1996年   9篇
  1995年   10篇
  1994年   7篇
  1993年   9篇
  1992年   20篇
  1991年   21篇
  1990年   18篇
  1989年   17篇
  1988年   14篇
  1987年   17篇
  1986年   10篇
  1985年   13篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1980年   4篇
  1979年   7篇
  1977年   2篇
  1976年   1篇
  1975年   5篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
排序方式: 共有955条查询结果,搜索用时 15 毫秒
41.
42.
A high-throughput in planta overexpression screen of a Nicotiana benthamiana cDNA library identified a mitogen activated protein kinase kinase (MAPKK), NbMKK1, as a potent inducer of hypersensitive response (HR)-like cell death. NbMKK1-mediated cell death was attenuated in plants whereby expression of NbSIPK, an ortholog of tobacco SIPK and Arabidopsis AtMPK6, was knocked down by virus-induced gene silencing (VIGS), suggesting that NbMKK1 functions upstream of NbSIPK. In accordance with this result, NbMKK1 phosphorylated NbSIPK in vitro, and furthermore NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. VIGS of NbMKK1 in N. benthamiana resulted in a delay of Phytophthora infestans INF1 elicitin-mediated HR as well as in the reduction of resistance against a non-host pathogen Pseudomonas cichorii. Our data of NbMKK1, together with that of LeMKK4,1 demonstrate the presence of a novel defense signaling pathway involving NbMKK1/LeMKK4 and SIPK.Key Words: MAPK, defense, cell death, in planta screenMitogen activated protein kinase (MAPK) cascades are highly conserved signaling pathways in eukaryotes, comprising three tiered classes of protein kinase, MAPKKK (MAPKK kinase), MAPKK and MAPK, that sequentially relay phosphorylation signals.2 The Arabidopsis genome carries genes for 20 MAPKs, 10 MAPKKs3 and more than 25 MAPKKKs.4 In plants, MAPK signaling is known to function in various biotic4,5 and abiotic6 stress responses and cytokinesis.7 In defense signaling, extensive research has been carried out for two tobacco MAPKs, SIPK8 (salicylic-acid-induced protein kinase; hereafter designated as NtSIPK) and WIPK9 (wound-induced protein kinase = NtWIPK), and their orthologs in Arabidopsis10 (AtMPK6 and ATMPK3, respectively), partly because kinase activities of these two MAPKs are easy to detect by an in gel kinase assay using myeline basic protein (MBP) as substrate.11 Both NtSIPK and NtWIPK are activated by the interaction between host resistance (R)- gene and cognate avirulence gene of pathogen11,12 and elicitor perception by host cells.13,14 Shuqun Zhang and his group showed that an upstream kinase of both NtSIPK and NtWIPK is NtMEK2.15 Transient overexpression of constitutively active NtMEK2 caused phosphorylation of NtSIPK and NtWIPK, resulting in rapid HR-like cell death in tobacco leaves.15 Later, the same lab showed that overexpression of NtSIPK alone also caused HR-like cell death.16 The downstream target proteins of NtSIPK and AtMPK6 are being identified and include 1-aminocyclopropane-1-carboxylic acid sythase-6 (ACS-6).17,18 Although recent studies identified another MAPK cascade (NtMEK1 → Ntf6) involved in defense responses19,20 we can still say that the current research focus of MAPK defense signaling centers around the cascade comprising [NtMEK2→ NtSIPK/NtWIPK→ target proteins] of tobacco and its orthologous pathways in other plant species.In an effort to search for plant genes involved in HR-like cell death, we have been employing a high-throughput in planta expression screen of N. benthamiana cDNA libraries. In this experimental system, a cDNA library was made in a binary potato virus X (PVX)-based expression vector pSfinx.21 The cDNA library was transferred to Agrobacterium tumefaciens, and 40,000 of the bacterial colonies were individually inoculated by toothpicks onto leaf blades of N. benthamiana leaves. The phenotype around the inoculated site was observed 1–2 weeks following the inoculation. This rapid screen identified 30 cDNAs that caused cell death after overexpression, including genes coding for ubiquitin proteins, RNA recognition motif (RRM) containing proteins, a class II ethylene-responsive element binding factor (EREBP)-like protein22 and a MAPKK protein (this work). Such an in planta screening technique has been used before for the isolation of fungal21 and oomycete23,24 elicitors and necrosis inducing genes, but not for isolation of plant genes. Overexpression screening of cDNA libraries is a common practice in prokaryotes, yeast and amimal cells,25,26 so it is a surprise that this approach has not been systematically applied in plants. Given its throughput, we propose that this virus-based transient overexpression system is a highly efficient way to isolate novel plant genes by functional screen.27 Since overexpression frequently causes non-specific perturbation of signaling, genes identified by overexpression should be further validated by loss-of-function assays, for instance, VIGS.28Overexpression of the identified MAPKK gene, NbMKK1, triggered a rapid generation of H2O2, followed by HR-like cell death in N. benthamiana leaves (this work). NbMKK1-GFP fusion protein overexpression also caused cell death, and curiously NbMKK1-GFP was shown to localize consistently in the nucleus. Sequence comparison classified NbMKK1 to the Group D of MAPKKs about which little information is available. So far, a MAPKK, LeMKK4, from tomato belonging to the Group D MAPKKs, was shown to cause cell death after overexpression.1 Based on amino acid sequence similarity and phylogenetic analyses, LeMKK4 and NbMKK1 seem to be orthologs. To see whether NbMKK1 transduces signals through SIPK and WIPK, we performed NbMKK1 overexpression in N. benthamiana plants whereby the expression of either NbSIPK or NbWIPK (WIPK ortholog in N. benthamiana) was silenced by VIGS. NbMKK1 did not induce cell death in NbSIPK-silenced plants, suggesting that the NbMKK1 cell death signal is transmitted through NbSIPK. Indeed, NbMKK1 phosphorylated NbSIPK in vitro, and NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. These results suggest that NbMKK1 interacts with NbSIPK, most probably with its N-terminal docking domain, and phosphorylates NbSIPK in vivo to transduce the cell death signal downstream.NbMKK1 exhibits constitutive expression in leaves. To determine the function of NbMKK1 in defense, we silenced NbMKK1 by VIGS, and such plants were challenged with Phytophthora infestans INF1 elicitin29 and Pseudomonas cichorii, a non-host pathogen. INF1-mediated HR cell death was remarkably delayed in NbMKK1-silenced plants. Likewise, plant defense against P. cichorii was compromised in NbMKK1-silenced plants. These results indicate that NbMKK1 is an important component of signaling of INF1-mediated HR and non-host resistance to P. cichorii.Together, our analyses of NbMKK1 and independent work from Greg Martin''s lab on LeMKK41 suggest that a Group D MAPKK, NbMKK1/LeMKK4, functions upstream of SIPK and transduces defense signals in these solanaceous plants (Fig. 1). In plants as well as in other eukaryotes, it is common that kinases have multiple partners. The work on these kinases fits this concept. A single MAPK (e.g., SIPK) is phosphorylated by multiple MAPKKs (e.g., NtMEK2 and NbMKK1), and a single MAPKK (e.g., NtMEK2) can phosphorylate multiple MAPKs (e.g., NtSIPK and NtWIPK).Open in a separate windowFigure 1Defense signaling through NbMKK1/LeMKK4. Two defense signal pathways involving NtMEK2 (indicated as MEK2) → WIPK/SIPK and NtMEK1(indicated as MEK1) → Ntf6 are well documented. By our and Pedley and Martin''s1 works, another novel MAPKK, NbMKK1/LeMKK4 was demonstrated to participate in defense signaling by phosphorylation of SIPK.  相似文献   
43.
FRAT1 positively regulates the WNT signaling pathway by stabilizing beta-catenin through the association with glycogen synthase kinase-3beta. Here, we have cloned FRAT2 cDNAs, spanning the complete coding sequence, from a human fetal lung cDNA library. FRAT2 encoded 233 amino-acid protein, which showed 77.3% total amino-acid identity with FRAT1. FRAT2 and FRAT1 were more homologous in the acidic domain (96% identity), the proline-rich domain (92% identity), and the GSK-3beta binding domain (100% identity). The FRAT2 gene was mapped to human chromosome 10q24.1. The FRAT2 mRNA of 2.4-kb in size was relatively highly expressed in MKN45 (gastric cancer), HeLa S3 (cervical cancer), and K-562 (chronic myelogenous leukemia). Xenopus axis duplication assay revealed that the wild-type FRAT2 mRNA, but not the mutant FRAT2 mRNA lacking the acidic domain and the proline-rich domain, has the capacity to induce the secondary axis. These results indicate that FRAT2, just like FRAT1, functions as a positive regulator of the WNT signaling pathway. Thus, up-regulation of FRAT2 in human cancer might be implicated in carcinogenesis through activation of the WNT signaling pathway.  相似文献   
44.
Fission yeast lsd1 strains show aberrant mitosis with a lsd phenotype, large and small daughter nuclei, and a very thick septum, the phenotypic expression being temperature-sensitive. The lsd1(+) gene is the homologue of the budding yeast FAS2 gene encoding the fatty acid synthase alpha-subunit as reported previously (S. Saitoh, K. Takahashi, K. Nabeshima, Y. Yamashita, Y. Nakaseko, A. Hirata, M. Yanagida, J. Cell Biol. 134 (1996) 949--961). In this paper, lsd1 is considered to represent fas2. Here, three fas2 strains were investigated and found to have missense point mutations at different sites in the gene encoding the alpha-subunit of fatty acid synthase. The mutation affected only slightly the enzymatic activities monitored in vitro. Unexpectedly, abnormal phospholipids, phosphatidylcholine and phosphatidylethanolamine, both of which contain a very-long-chain fatty acyl residue (1-melissoyl-2-oleolyl-sn-glycero-3-phosphocholine and 1-melissoyl-2-oleolyl-sn-glycero-3-phosphoethanolamine), accumulated in fas2 strains in a temperature-sensitive manner. Rescue of the fas2 strains by addition of palmitate to the medium at restrictive temperature was accompanied by disappearance of these abnormal phospholipids. Accumulation of these lipids in membranes may cause alteration of various cellular functions.  相似文献   
45.
A 28 kDa protein that exhibits cytocidal activity specific for human leukemic T (MOLT-4) cells was purified from proteinase K-digested parasporal inclusion of a Bacillus thuringiensis serovar shandongiensis isolate. The N-terminal sequence of the protein was identical with that of the 32 kDa protein, regarded as a protoxin, of the inclusion proteins. The median effective concentration of this protein was 0.23 microg/ml against MOLT-4 cells and its specific activity was 7.9 times greater than that of the whole inclusion proteins. The 28 kDa protein induced necrosis-like cytotoxicity against MOLT-4 cells and the cytopathic effect with the passage of time was characterized by cell swelling, nuclear membrane isolation and chromatin condensation.  相似文献   
46.
47.
2',3'-Dihydrophylloquinone (dihydro-K1) is a hydrogenated form of vitamin K1 (K1), which is produced during the hydrogenation of K1-rich plant oils. In this study, we found that dihydro-K1 counteracts the sodium warfarin-induced prolonged blood coagulation in rats. This indicates that dihydro-K1 functions as a cofactor in the posttranslational gamma-carboxylation of the vitamin K-dependent coagulation factors. It was also found that dihydro-K1 as well as K1 inhibits the decreasing effects of warfarin on the serum total osteocalcin level. In rats, dihydro-K1 is well absorbed and detected in the tissues of the brain, pancreas, kidney, testis, abdominal aorta, liver and femur. K1 is converted to menaquinone-4 (MK-4) in all the above-mentioned tissues, but dihydro-K1 is not. The unique characteristic of dihydro-K1 possessing vitamin K activity and not being converted to MK-4 would be useful in revealing the as yet undetermined physiological function of the conversion of K1 to MK-4.  相似文献   
48.
The etiology of type 2 diabetes (DM) is polygenic. We investigated here genes and polymorphisms that associate with DM in the Japanese population. Single-nucleotide polymorphisms (SNPs) of 398 derived from 120 candidate genes were examined for association with DM in a population-based case-control study. The study group consisted of 148 cases and 227 controls recruited from Funagata, Japan. No evident subpopulation structure was detected for the tested population. The association tests were conducted with standard allele positivity tables (chi(2) tests) between SNP genotype frequency and case-control status. The independent association of the SNPs from serum triglyceride levels and body mass index was examined by multiple logistic regression analysis. A value of P<0.01 was accepted as statistically significant. Six genes (met proto-oncogene, ATP-binding cassette transporter A1, fatty acid binding protein 2, LDL receptor defect C complementing, aldolase B, and sulfonylurea receptor) were shown to be associated with DM.  相似文献   
49.
50.
Transgenic rice ( Oryza sativa cv. Sasanishiki) overexpressing the wasabi defensin gene, a plant defensin effective against the rice blast fungus, was generated by Agrobacterium tumefaciens-mediated transformation. Twenty-two T2 homozygous lines harboring the wasabi defensin gene were challenged by the blast fungus. Transformants exhibited resistance to rice blast at various levels. The inheritance of the resistance over generations was investigated. T3 plants derived from two highly blast-resistant T2 lines (WT14-5 and WT43-5) were challenged with the blast fungus using the press-injured spots method. The average size of disease lesions of the transgenic line WT43-5 was reduced to about half of that of non-transgenic plants. The 5-kDa peptide, corresponding to the processed form of the wasabi defensin, was detected in the total protein fraction extracted from the T3 progeny. Transgenic rice plants overproducing wasabi defensin are expected to possess a durable and wide-spectrum resistance (i.e. field resistance) against various rice blast races.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号