全文获取类型
收费全文 | 209篇 |
免费 | 23篇 |
专业分类
232篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 5篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 7篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 8篇 |
2014年 | 7篇 |
2013年 | 17篇 |
2012年 | 13篇 |
2011年 | 14篇 |
2010年 | 9篇 |
2009年 | 8篇 |
2008年 | 11篇 |
2007年 | 7篇 |
2006年 | 15篇 |
2005年 | 10篇 |
2004年 | 14篇 |
2003年 | 7篇 |
2002年 | 15篇 |
2001年 | 7篇 |
2000年 | 1篇 |
1999年 | 5篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 5篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1988年 | 5篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1981年 | 1篇 |
1978年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有232条查询结果,搜索用时 0 毫秒
11.
Misato Suzuki Fumiya Nakamura Emi Taguchi Maho Nakata Fumi Wada Momoka Takihi Tomoyo Inoue Shinji Ohta Hiroyuki Kawachi 《Molecular and cellular biochemistry》2018,438(1-2):35-45
Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr kinase family, and is associated with different types of cancer and neurodegenerative diseases. Vanillin is a natural compound, a primary component of the extract of the vanilla bean which possesses varieties of pharmacological features including anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor. Here, we have investigated the binding mechanism and affinity of vanillin to the CAMKIV which is being considered as a potential drug target for cancer and neurodegenerative diseases. We found that vanillin binds strongly to the active site cavity of CAMKIV and stabilized by a large number of non-covalent interactions. We explored the utility of vanillin as anti-cancer agent and found that it inhibits the proliferation of human hepatocyte carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cells in a dose-dependent manner. Furthermore, vanillin treatment resulted into the significant reduction in the mitochondrial membrane depolarization and ROS production that eventually leads to apoptosis in HepG2 and SH-SY5Y cancer cells. These findings may offer a novel therapeutic approach by targeting the CAMKIV using natural product and its derivative with a minimal side effect. 相似文献
12.
Ting Wei Jun Hu Kazuhiko Miyanaga Yasunori Tanji 《Applied microbiology and biotechnology》2013,97(4):1775-1783
The housefly (Musca domestica) is an important host for a variety of bacteria, including some pathogenic and antibiotic-resistant strains. To further investigate the relationship between the housefly and the bacteria it harbors, it is necessary to understand the fate of microorganisms during the larval metamorphosis. The major bacterial communities in three developmental stages of the housefly (maggot, pupa, and adult fly) were investigated by a culture-independent method, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR?DGGE) analysis of 16S rRNA genes. The bacteria that were identified using DGGE analysis spanned phyla Proteobacteria, Firmicutes, and Bacteroidetes. Changes in the predominant genera were observed during the housefly development. Bacteroides, Koukoulia, and Schineria were detected in maggots, Neisseria in pupae, and Macrococcus, Lactococcus, and Kurthia in adult flies. Antibiotic-resistant bacteria were screened using a selective medium and tested for antibiotic susceptibility. Most resistant isolates from maggots and pupae were classified as Proteus spp., while those from adult flies were much more diverse and spanned 12 genera. Among 20 tested strains across the three stages, 18 were resistant to at least two antibiotics. Overall, we demonstrated that there are changes in the major bacterial communities and antibiotic-resistant strains as the housefly develops. 相似文献
13.
Fumiya Noguchi Masaru Kawato Takao Yoshida Yoshihiro Fujiwara Katsunori Fujikura Kiyotaka Takishita 《The Journal of eukaryotic microbiology》2013,60(2):158-165
It has recently been unveiled that a wide variety of microbial eukaryotes (protists) occur in chemosynthetic ecosystems, such as hydrothermal vents and methane seeps. However, there is little knowledge regarding protists associated with endemic animals inhabiting these environments. In the present study, utilizing PCR techniques, we detected fragments of the small subunit ribosomal RNA gene (SSU rRNA gene) from a particular protist from gill tissues of a significant fraction of the vesicomyid clams Calyptogena soyoae and C. okutanii complex and of the mussel Bathymodiolus platifrons and B. japonicus, all of which harbor chemosynthetic endosymbiont bacteria and dominate methane seeps in Sagami Bay, Japan. Based on the phylogeny of SSU rRNA gene, the organism in question was shown to belong to Alveolata. It is noteworthy that this protist did not affiliate with any known alveolate group, although being deeply branched within the lineage of Syndiniales, for which the monophyly was constantly recovered, but not robustly supported. In addition, the protist detected using PCR followed by sequencing was localized within gill epithelial cells of B. platifrons with whole‐mount fluorescence in situ hybridization. This protist may be an endoparasite or an endocommensal of Calyptogena spp. and Bathymodiolus spp., and possibly have physiological and ecological impacts on these bivalves. 相似文献
14.
Background
Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements.Methodology
This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor.Conclusions/Significance
The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. 相似文献15.
Kyouhei Asano Jung-Bum Lee Yoshimi Yamamura Fumiya Kurosaki 《Transgenic research》2013,22(6):1249-1255
Leaf tissues of Atropa belladonna were transformed by Sdrac2, a Rac GTPase gene, that is isolated from Scoparia dulcis, and the change in atropine concentration of the transformants was examined. Re-differentiated A. belladonna overexpressing Sdrac2 accumulated considerable concentration of atropine in the leaf tissues, whereas the leaves of plants transformed by an empty vector accumulated only a very low concentration of the compound. A. belladonna transformed by CASdrac2, a modified Sdrac2 of which translate was expected to bind guanosine triphosphate (GTP) permanently, accumulated very high concentrations of atropine (approximately 2.4-fold excess to those found in the wild-type plant in its natural habitat). In sharp contrast, the atropine concentration in transformed A. belladonna prepared with negatively modified Sdrac2, DNSdrac2, expected to bind guanosine diphosphate instead of GTP, was very low. These results suggested that Rac GTPases play an important role in the regulation of secondary metabolism in plant cells and that overexpression of the gene(s) may be capable of enhancing the production of natural products accumulated in higher plant cells. 相似文献
16.
In order to establish a novel recovery system for polyhydroxyalkanoates, a self-disruptive strain of Bacillus megaterium that responds to substrate exhaustion was constructed. A gene cassette carrying the lysis system of Bacillus amyloliquefaciens phage - holin and endolysin - was inserted into the Escherichia coli- Bacillus subtilis shuttle vector pX under the control of a xylose-inducible expression system, xylR-xylA '. In this system, the expression of a target gene is induced by xylose but inhibited by glucose, which acts as an anti-inducer. B. megaterium was transformed with pX conveying the phage lysis system, which was integrated into the amyE locus of chromosomal DNA of B. megaterium by homologous recombination. The lysis system caused self-disruption of the transformant cells effectively even when expression of the lysis genes was induced during stationary phase. For the production of polyhydroxybutyrate (PHB), the transformant was grown in a medium containing glucose as a substrate in the presence of xylose. When the glucose concentration approached zero, self-disruption was spontaneously induced, releasing intracellularly accumulated PHB into the culture broth. This system realizes timely cell disruption immediately after the PHB content in the cell reaches a maximum level. 相似文献
17.
Kanako Fukunaga Masafumi Tanji Nana Hanzawa Hiroki Kuroda Masafumi Inui 《Biochemistry and Biophysics Reports》2021
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species. 相似文献
18.
6-Hydroxymellein (6HM) synthase is a multifunctional polyketide enzyme induced in carrot cells, whose fully active homodimer catalyzes condensation of acyl-CoAs and the NADPH-dependent ketoreduction of the enzyme-bound intermediate. 6HM-forming activity of the synthase was markedly decreased when the reaction mixture pH was adjusted from 7.5 to 6.0. However, under these slightly acidic conditions, the acyl condensation catalyzed by the dissociated monomer enzyme was appreciably stimulated by addition of free coenzyme A (CoA). In contrast, the condensation reaction at pH 6.0 was significantly inhibited in the presence of CoA when the reaction was carried out with the NADPH-omitted dimer synthase. Among the kinetic parameters of the acyl condensation, velocity of the monomer-catalyzing reaction at the acidic pH was appreciably increased upon addition of CoA while K(m)s did not show any significant change in the presence and absence of the compound. These results suggest that CoA associates with a specific site in the dissociated monomeric form of 6HM synthase, and the velocity of the acyl condensation reaction catalyzed by the CoA-synthase complex appreciably increases in acidic conditions. 相似文献
19.
20.
Role of Chitinase and Chitin Oligosaccharides in Lignification Response of Cultured Carrot Cells Treated with Mycelial Walls 总被引:3,自引:0,他引:3
Chitinase activity was induced in cultured carrot cells by incubationwith mycelial walls of a fungus, Chaetomium globosum. Both intra-and extracellular chitinases were resolved into four componentsby gel filtration chromatography. The extracellular enzymesliberated soluble oligosaccharides of different sizes from insolublechitin, suggesting that these carrot chitinases are endo-hydrolases.The solubilized chitinase digests obtained from insoluble mycelialwalls of C. globosum and chitin were fractionated by gel filtrationchromatography, and the elicitor activity of each fraction forthe accumulation of phenolic acids in cultured carrot cellswas determined. In both solubilized fragments of fungal wallsand of chitin, elicitor-active oligosaccharides were distributedin many fractions, however, potent activity for inducing phenolicacid synthesis was observed in the high molecular weight fractions. (Received October 5, 1987; Accepted February 12, 1988) 相似文献