首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3215篇
  免费   201篇
  2021年   25篇
  2020年   11篇
  2019年   15篇
  2018年   35篇
  2017年   32篇
  2016年   51篇
  2015年   70篇
  2014年   92篇
  2013年   215篇
  2012年   148篇
  2011年   151篇
  2010年   92篇
  2009年   95篇
  2008年   162篇
  2007年   179篇
  2006年   135篇
  2005年   161篇
  2004年   173篇
  2003年   170篇
  2002年   155篇
  2001年   81篇
  2000年   90篇
  1999年   67篇
  1998年   47篇
  1997年   43篇
  1996年   49篇
  1995年   47篇
  1994年   38篇
  1993年   36篇
  1992年   66篇
  1991年   57篇
  1990年   52篇
  1989年   39篇
  1988年   49篇
  1987年   58篇
  1986年   48篇
  1985年   31篇
  1984年   33篇
  1983年   35篇
  1982年   35篇
  1981年   34篇
  1980年   24篇
  1979年   26篇
  1978年   25篇
  1977年   14篇
  1976年   21篇
  1975年   12篇
  1974年   11篇
  1972年   10篇
  1970年   10篇
排序方式: 共有3416条查询结果,搜索用时 15 毫秒
991.
Mismatch-repair (MMR) systems suppress mutation via correction of DNA replication errors (base-mispairs) and responses to mutagenic DNA lesions. Selective binding of mismatched or damaged DNA by MutS-homolog proteins-bacterial MutS, eukaryotic MSH2.MSH6 (MutSalpha) and MSH2.MSH3-initiates mismatch-correction pathways and responses to lesions, and may cumulatively increase discrimination at downstream steps. MutS-homolog binding selectivity and the well-known but poorly understood effects of DNA-sequence contexts on recognition may thus be primary determinants of MMR specificity and efficiency. MMR processes that modulate UV mutagenesis might begin with selective binding by MutS homologs of "mismatched" T[CPD]T/AG and T[6--4]T/AG photoproducts, reported previously for hMutSalpha and described here for E. coli MutS protein. If MMR suppresses UV mutagenesis by acting directly on pre-mutagenic products of replicative bypass, mismatched photoproducts should be recognized in most DNA-sequence contexts. In three of four contexts tested here (three substantially different), T[CPD]T/AG was bound only slightly better by MutS than was T[CPD]T/AA or homoduplex DNA; only one of two contexts tested promoted selective binding of T[6--4]T/AG. Although the T:G pairs in T[CPD]T/AG and T/G both adopt wobble conformations, MutS bound T/G well in all contexts (K(1/2) 2.1--2.9 nM). Thus, MutS appears to select the two mismatches by different mechanisms. NMR analyses elsewhere suggest that in the (highly distorted) T[6--4]T/AG a forked H-bond between O2 of the 3' thymine and the ring 1-imino and exocyclic 2-amino guanine protons stabilizes a novel planar structure not possible in T[6--4]T/AA. Replacement of G by purines lacking one (inosine, 2-aminopurine) or both (nebularine) protons markedly reduced or eliminated selective MutS binding, as predicted. Previous studies and the work here, taken together, suggest that in only about half of DNA sequence contexts could MutS (and presumably MutSalpha) selectively bind mismatched UV photoproducts and directly suppress UV mutagenesis.  相似文献   
992.
993.
Taxol derivatives are selective inhibitors of DNA polymerase alpha   总被引:1,自引:0,他引:1  
During screening for mammalian DNA polymerase inhibitors, we found and succeeded in isolating a potent inhibitor from a higher plant, Taxus cuspidate. The compound was unexpectedly determined to be taxinine, an intermediate of paclitaxel (taxol) metabolism. Taxinine was found to selectively inhibit DNA polymerase alpha (pol.alpha) and beta (pol.beta). We therefore, tested taxol and other derivatives and found that taxol itself had no such inhibitory effect, and only taxinine could inhibit both pol.alpha and beta. The other compounds used, one derivative, cephalomannine, and five intermediates synthesized chemically inhibited only the pol.alpha activity in vitro. None of the compounds, including taxinine, influenced the activities of the other DNA polymerases, which are reportedly targeted by many pol.beta inhibitors. With both pol.alpha and beta, all of the compounds tested noncompetitively inhibited with respect to both the DNA template-primer and the dNTP substrate.  相似文献   
994.
The X-ray crystal structure of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase alpha, has previously been reported. We show that dehydroaltenusin exists in an equilibrium mixture of two tautomers possessing gamma-lactone or delta-lactone in polar solvents by NMR experiments. Acetylation of dehydroaltenusin afforded two types of diacetates and two types of monoacetate, possessing gamma-lactone or delta-lactone, respectively. The inhibitory activities of these acetate derivatives against DNA polymerase alpha were all much weaker than that of dehydroaltenusin.  相似文献   
995.
In human cells, oxidative pyrimidine lesions are restored by the base excision repair pathway initiated by homologues of Endo III (hNTH1) and Endo VIII (hNEIL1 and hNEIL2). In this study we have quantitatively analyzed and compared their activity toward nine oxidative base lesions and an apurinic/apyrimidinic (AP) site using defined oligonucleotide substrates. hNTH1 and hNEIL1 but not hNEIL2 excised the two stereoisomers of thymine glycol (5R-Tg and 5S-Tg), but their isomer specificity was markedly different: the relative activity for 5R-Tg:5S-Tg was 13:1 for hNTH1 and 1.5:1 for hNEIL1. This was also the case for their Escherichia coli homologues: the relative activity for 5R-Tg:5S-Tg was 1:2.5 for Endo III and 3.2:1 for Endo VIII. Among other tested lesions for hNTH1, an AP site was a significantly better substrate than urea, 5-hydroxyuracil (hoU), and guanine-derived formamidopyrimidine (mFapyG), whereas for hNEIL1 these base lesions and an AP site were comparable substrates. In contrast, hNEIL2 recognized an AP site exclusively, and the activity for hoU and mFapyG was marginal. hNEIL1, hNEIL2, and Endo VIII but not hNTH1 and Endo III formed cross-links to oxanine, suggesting conservation of the -fold of the active site of the Endo VIII homologues. The profiles of the excision of the Tg isomers with HeLa and E. coli cell extracts closely resembled those of hNTH1 and Endo III, confirming their major contribution to the repair of Tg isomers in cells. However, detailed analysis of the cellular activity suggests that hNEIL1 has a significant role in the repair of 5S-Tg in human cells.  相似文献   
996.
A family of serine/threonine kinase Aurora constitutes a key regulator in the orchestration of mitotic events. The human Aurora paralogues Aurora-A, Aurora-B, and Aurora-C have a highly conserved catalytic domain. Extensive studies on the role of Aurora-A and Aurora-B have revealed distinct localizations and functions in regulating mitotic processes, whereas little is known about Aurora-C. The present study shows that human Aurora-C is a chromosomal passenger protein that forms complexes with Aurora-B and inner centromere protein (INCENP), which are known passenger proteins. We show that INCENP binds and activates Aurora-C in vivo and in vitro. Furthermore, Aurora-C co-expressed with INCENP elicits the phosphorylation of endogenous histone H3 in mammalian cells, even though this phosphorylation is not sufficient to establish chromosome condensation in interphase cells. We therefore suggest that Aurora-C is a novel chromosomal passenger protein that cooperates with Aurora-B to regulate mitotic chromosome dynamics in mammalian cells.  相似文献   
997.
We examined the role of regulatory myosin light chain (MLC) phosphorylation of myosin II in cell migration of fibroblasts. Myosin light chain kinase (MLCK) inhibition blocked MLC phosphorylation at the cell periphery, but not in the center. MLCK-inhibited cells did not assemble zyxin-containing adhesions at the periphery, but maintained focal adhesions in the center. They generated membrane protrusions all around the cell, turned more frequently, and migrated less effectively. In contrast, Rho-associated kinase (ROCK) inhibition blocked MLC phosphorylation in the center, but not at the periphery. ROCK-inhibited cells assembled zyxin-containing adhesions at the periphery, but not focal adhesions in the center. They moved faster and more straight. On the other hand, inhibition of myosin phosphatase increased MLC phosphorylation and blocked peripheral membrane ruffling, as well as turnover of focal adhesions and cell migration. Our results suggest that myosin II activated by MLCK at the cell periphery controls membrane ruffling, and that the spatial regulation of MLC phosphorylation plays critical roles in controlling cell migration of fibroblasts.  相似文献   
998.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   
999.
Lipid rafts accumulate in the immunological synapse formed by an organized assembly of the TCR/CD3, LFA-1, and signaling molecules. However, the precise role of lipid rafts in the formation of the immunological synapse is unclear. In this study, we show that LFA-1 on CTL is constitutively active and mediates Ag-independent binding of CTL to target cells expressing its ligands. LFA-1 and CD3 on CTL, but not resting T cells, colocalize in lipid rafts. Binding of LFA-1 on CTL to targets initiates the formation of the immunological synapse, which is formed by LFA-1, CD3, and ganglioside GM1 distributed in the periphery of the cell contact site and cholesterol is more widely distributed. The formation of this synapse is Ag independent, but the recognition of Ag by the TCR induces accumulation of tyrosine phosphorylated proteins in the synapse as well as redistribution of the microtubule organization center toward the cell contact site. Our results suggest that LFA-1 recruits lipid rafts and the TCR/CD3 to the synapse, and facilitates efficient and rapid activation of CTL.  相似文献   
1000.
Synthetic antimicrobial 9-mer peptides were designed from the amino acid sequence of an active site of insect defensin to increase the number of positively charged amino acid residues. These peptides, RLRLRIGRR-NH2, RLLLRIGRR-NH2 and RLYLRIGRR-NH2, showed strong antimicrobial activity against bacteria and fungus. These peptides showed no growth inhibition activity against murine fibroblasts or macrophages and no hemolytic activity against rabbit erythrocytes in vitro. Furthermore, the administration of these peptides protected mice from a lethal methicillin-resistant Staphylococcus aureus (MRSA) challenge. In addition, these peptides suppressed tumor necrosis factor alpha (TNF-alpha) gene expression and production induced by lipopolysaccharide (LPS) or lipoteichoic acid (LTA) in murine macrophages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号