首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   35篇
  369篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   1篇
  2018年   8篇
  2017年   9篇
  2016年   4篇
  2015年   16篇
  2014年   16篇
  2013年   28篇
  2012年   25篇
  2011年   27篇
  2010年   12篇
  2009年   13篇
  2008年   25篇
  2007年   20篇
  2006年   25篇
  2005年   15篇
  2004年   23篇
  2003年   16篇
  2002年   22篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
31.
In Alzheimer’s disease (AD), enhancing α-secretase processing of amyloid precursor protein (APP) is an important pathway to decrease neurotoxic amyloid β (Aβ) secretion. The α-secretase is reported to be regulated by protein kinase C (PKC) and various endogenous proteins or cell surface receptors. In this report, we first examined whether Aβ reduces α-secretase activity, and showed that Aβ peptide 1–40 (0.001 and 0.01 μM) reduced the secretion of soluble amyloid precursor protein α (sAPPα) in carbachol-stimulated SH-SY5Y neuroblastoma cells. E-64-d (3 μM), which is a potent calpain inhibitor that prevents PKC degradation, ameliorated the Aβ-induced reduction of sAPPα secretion. In addition, we observed that Aβ significantly enhanced ceramide production by activating neutral sphingomyelinase. The cell-permeable ceramide analog, C2-ceramide (1 μg/mL), also reduced sAPPα secretion, and in addition, E-64-d eliminated the observed decrease of sAPPα secretion. C2-ceramide induced down-regulation of PKC-α, -β1, and -β2 isozymes in SH-SY5Y cells. These findings suggest that ceramide may play an important role in sAPPα processing by modulating PKC activity.  相似文献   
32.
33.
A system for subculture of spinach (Spinacia oleracea L.) roots was established, and differences in regeneration; namely, embryogenic competence, among individuals of the `Nippon' cultivar were examined. Root tissues, excised from seedlings, were grown on medium without growth regulators and subcultured on the same medium and then on medium that contained 10 M naphthaleneacetic acid and 0.1 M gibberellic acid to induce callus formation. Calli were transferred to medium without growth regulators. All explants formed calli. However, the frequency of embryo formation varied among lines. Higher concentrations of gibberellic acid in the callus-induction medium had limited effects on somatic embryogenesis from poorly embryogenic lines. These results indicate that inherent factors are important for somatic embryogenesis in spinach and that the root subculture system is useful for identifying strongly regenerative genotypes among individuals of a single cultivar.  相似文献   
34.
35.
36.
We searched for a human chromosome that would restore the cholesterol metabolism in 3T3 cell lines (SPM-3T3) derived from homozygous sphingomyelinosis mice (spm/spm). Mouse A9 cells containing a single copy of pSV2neo-tagged chromosomes 9, 11, or 18 derived from normal human fibroblasts served as donor cells for transfer of human chromosomes. Purified A9 microcells were fused with SPM-3T3 cells, and the microcell hybrids were selected in medium containing G418 antibiotics. The microcell hybrids that contained human chromosomes 9, 11, or 18 in a majority of cells were examined. The accumulation of intracellular cholesterol in the microcell hybrids containing a chromosome 18 decreased markedly, whereas in the microcell hybrids containing either chromosomes 9 or 11 it was similar to that in SPM3T3 cells. The SPM-3T3 cells with an intact chromosome 18 were further passaged and subcloned. Clones which again accumulated intracellular cholesterol had concurrently lost the introduced chromosome 18. The abnormal accumulation was associated with a decrement in the esterification of exogenous cholesterol. These findings suggest that the gene responsible for the abnormal cholesterol metabolism in the spm/spm mice can be restored by a hu man chromosome 18. The gene was tentatively mapped on 18pter18p11.3 or 18q21.3qter that was lost during subcloning, thereby resulting in reaccumulation of the intracellular cholesterol.  相似文献   
37.
38.
Iron regulatory protein 2 (IRP2), a regulator of iron metabolism, is modulated by ubiquitination and degradation. We have shown that IRP2 degradation is triggered by heme-mediated oxidation. We report here that not only Cys201, an invariant residue in the heme regulatory motif (HRM), but also His204 is critical for IRP2 degradation. Spectroscopic studies revealed that Cys201 binds ferric heme, whereas His204 is a ferrous heme binding site, indicating the involvement of these residues in sensing the redox state of the heme iron and in generating the oxidative modification. Moreover, the HRM in IRP2 has been suggested to play a critical role in its recognition by the HOIL-1 ubiquitin ligase. Although HRMs are known to sense heme concentration by simply binding to heme, the HRM in IRP2 specifically contributes to its oxidative modification, its recognition by the ligase, and its sensing of iron concentration after iron is integrated into heme.  相似文献   
39.
We demonstrate that neuronal nitric-oxide synthase (nNOS) is directly inhibited through the phosphorylation of Thr(1296) in NG108-15 neuronal cells. Treatment of NG108-15 cells expressing nNOS with calyculin A, an inhibitor of protein phosphatase 1 and 2A, revealed a dose-dependent inhibition of nNOS enzyme activity with concomitant phosphorylation of Thr(1296) residue. Cells expressing a phosphorylation-deficient mutant in which Thr(1296) was changed to Ala proved resistant to phosphorylation and suppression of NOS activity. Mimicking phosphorylation mutant of nNOS in which Thr(1296) is changed to Asp showed a significant decrease in nNOS enzyme activity, being competitive with NADPH, relative to the wild-type enzyme. These data suggest that phosphorylation of nNOS at Thr(1296) may involve the attenuation of nitric oxide production in neuronal cells through the decrease of NADPH-binding to the enzyme.  相似文献   
40.
The structure of enterocin NKR-5-3C, an anti-listerial bacteriocin produced by a multiple bacteriocin producer, Enterococcus faecium NKR-5-3, was determined. Enterocin NKR-5-3C is a novel class IIa bacteriocin that possesses an YGNGL motif sequence and two disulfide bridges in its structure. It is encoded on gene ent53C together with an 18-amino-acid-residue double glycine leader peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号