首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   641篇
  免费   47篇
  688篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   13篇
  2014年   17篇
  2013年   43篇
  2012年   39篇
  2011年   36篇
  2010年   25篇
  2009年   26篇
  2008年   60篇
  2007年   50篇
  2006年   32篇
  2005年   52篇
  2004年   47篇
  2003年   44篇
  2002年   36篇
  2001年   3篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   7篇
  1991年   8篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   6篇
  1976年   4篇
  1975年   2篇
  1974年   5篇
  1973年   6篇
  1971年   3篇
  1969年   4篇
  1967年   5篇
  1966年   2篇
排序方式: 共有688条查询结果,搜索用时 9 毫秒
51.
Oviposition response of Ideopsis similis (L.) (Lepidoptera: Danaidae) was examined for 12 phenanthroindolizidine alkaloids present in its host plant, Tylophora tanakae (Maxim.) (Asclepiadaceae). At least five alkaloids, i.e. (+)‐isotylocrebrine (3,4,6,7‐tetramethoxyphenanthroindolizidine; l ), (+)‐3‐demethyliso‐ tylocrebrine ( 3 ), (+)‐isotylocrebrine N‐oxide ( 5 ), (+)‐6‐demethyltylocrebrine ( 8 ) and (–)‐7‐demethyltylophorine ( 10 ), were found to individually stimulate oviposition by females. Of these, compounds 1, 3 and 10 were regarded as key components most responsible for host recognition or preference. However, female egg‐laying was much higher in response to a mixture of the five alkaloids. In two‐choice bioassays, more eggs were deposited on samples comprising the five alkaloids than on samples consisting of a single alkaloid. This suggests strongly that host selection by the butterfly is mediated by the synergistic action of several phenanthroindolizidine alkaloids present in the host plant.  相似文献   
52.
Ras activates Raf, leading to the extracellular-regulated kinase (ERK)-mitogen-activated protein kinase pathway, which is involved in a variety of cellular, physiological, and pathological responses. Thus, regulators of this Ras-Raf interaction play crucial roles in these responses. In this study, we report a novel regulator of the Ras-Raf interaction named DA-Raf1. DA-Raf1 is a splicing isoform of A-Raf with a wider tissue distribution than A-Raf. It contains the Ras-binding domain but lacks the kinase domain, which is responsible for activation of the ERK pathway. As inferred from its structure, DA-Raf1 bound to activated Ras as well as M-Ras and interfered with the ERK pathway. The Ras-ERK pathway is essential for the negative regulation of myogenic differentiation induced by growth factors. DA-Raf1 served as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. These results imply that DA-Raf1 is the first identified competent, intrinsic, dominant-negative antagonist of the Ras-ERK pathway.  相似文献   
53.
Inbred strains of the brine shrimp were developed from dry dormant cysts of wild-type Artemia franciscana produced in the Great Salt Lake, U.S.A. The established strains were named GSL2, 4, and 7. They were raised in 2% natural sea salt solution at 28 degrees C under a long-day condition, and fed on food sold for Artemia. Ovoviviparous offspring (free-swimming nauplii) in each brood derived from full sib (sister x brother) matings were used for succeeding generations. The ordinal number of the filial generation increased at a rate of ten generations per year. The number was over 60, and the lineage was recorded. Random amplified polymorphic DNA (RAPD) analyses of the inbred strains revealed the uniqueness, homogeneity, and genetic similarity among them. Their life span, the time required to become sexually mature, brood size, mode of reproduction, and adaptation and tolerance to salinity changes were investigated. The inbred strains usually released free-swimming nauplii rather than spawning encysted gastrulae (dormant cysts). On the other hand, the opposite results were obtained from wild-type Artemia under the same conditions. Both adults and nauplii of the inbred strains appeared to be less adaptive and less tolerant to salinity changes compared to those of the wild type. The established inbred strains should provide a wider and deeper scope for Artemia biology in particular, and the life sciences in general.  相似文献   
54.
The BAHD family is a class of acyl-CoA-dependent acyltransferases that are involved in plant secondary metabolism and show a diverse range of specificities for acyl acceptors. Anthocyanin acyltransferases make up an important class of the BAHD family and catalyze the acylation of anthocyanins that are responsible for most of the red-to-blue colors of flowers. Here, we describe crystallographic and mutational studies of three similar anthocyanin malonyltransferases from red chrysanthemum petals: anthocyanidin 3-O-glucoside-6'-O-malonyltransferase (Dm3MaT1), anthocyanidin 3-O-glucoside-3', 6'-O-dimalonyltransferase (Dm3MaT2), and a homolog (Dm3MaT3). Mutational analyses revealed that seven amino acid residues in the N- and C-terminal regions are important for the differential acyl-acceptor specificity between Dm3MaT1 and Dm3MaT2. Crystallographic studies of Dm3MaT3 provided the first structure of a BAHD member, complexed with acyl-CoA, showing the detailed interactions between the enzyme and acyl-CoA molecules. The structure, combined with the results of mutational analyses, allowed us to identify the acyl-acceptor binding site of anthocyanin malonyltransferases, which is structurally different from the corresponding portion of vinorine synthase, another BAHD member, thus permitting the diversity of the acyl-acceptor specificity of BAHD family to be understood.  相似文献   
55.
Phosphorylation of endogenous inhibitor proteins for type-1 Ser/Thr phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and phosphatase activities. A myosin phosphatase inhibitor protein CPI-17 is phosphorylated at Thr38 through G-protein-mediated signals, resulting in a >1000-fold increase in inhibitory potency. We show here the solution NMR structure of phospho-T38-CPI-17 with rmsd of 0.36 +/- 0.06 A for the backbone secondary structure, which reveals how phosphorylation triggers a conformational change and exposes an inhibitory surface. This active conformation is stabilized by the formation of a hydrophobic core of intercalated side chains, which is not formed in a phospho-mimetic D38 form of CPI-17. Thus, the profound increase in potency of CPI-17 arises from phosphorylation, conformational change, and hydrophobic stabilization of a rigid structure that poses the phosphorylated residue on the protein surface and restricts its hydrolysis by myosin phosphatase. Our results provide structural insights into transduction of kinase signals by PP1 inhibitor proteins.  相似文献   
56.
PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells   总被引:1,自引:0,他引:1  
Cultured adherent cells divide on the substratum, leading to formation of the cell monolayer. However, how the orientation of this anchorage-dependent cell division is regulated remains unknown. We have previously shown that integrin-dependent adhesion orients the spindle parallel to the substratum, which ensures this anchorage-dependent cell division. Here, we show that phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) is essential for this spindle orientation control. In metaphase, PtdIns(3,4,5)P3 is accumulated in the midcortex in an integrin-dependent manner. Inhibition of phosphatidylinositol-3-OH kinase (PI(3)K) reduces the accumulation of PtdIns(3,4,5)P3 and induces spindle misorientation. Introduction of PtdIns(3,4,5)P3 to these cells restores the midcortical accumulation of PtdIns(3,4,5)P3 and proper spindle orientation. PI(3)K inhibition causes dynein-dependent spindle rotations along the z-axis, resulting in spindle misorientation. Moreover, dynactin, a dynein-binding partner, is accumulated in the midcortex in a PtdIns(3,4,5)P3-dependent manner. We propose that PtdIns(3,4,5)P3 directs dynein/dynactin-dependent pulling forces on spindles to the midcortex, and thereby orients the spindle parallel to the substratum.  相似文献   
57.
Molecular motors such as kinesin regulate affinity to a rail protein during the ATP hydrolysis cycle. The regulation mechanism, however, is yet to be determined. To understand this mechanism, we investigated the structural fluctuations of the motor head of the single‐headed kinesin called KIF1A in different nucleotide states using molecular dynamics simulations of a Gō‐like model. We found that the helix at the microtubule (MT) binding site intermittently exhibits a large structural fluctuation when MT is absent. Frequency of this fluctuation changes systematically according to the nucleotide states and correlates strongly with the experimentally observed binding affinity to MT. We also showed that thermal fluctuation enhances the correlation and the interaction with the nucleotide suppresses the fluctuation of the helix . These results suggest that KIF1A regulates affinity to MT by changing the flexibility of the helix during the ATP hydrolysis process: the binding site becomes more flexible in the strong binding state than in the weak binding state. Proteins 2015; 83:809–819. © 2015 Wiley Periodicals, Inc.  相似文献   
58.
Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality.  相似文献   
59.
It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.  相似文献   
60.
The HrpZ harpin of Pseudomonas syringae is known to induce a hypersensitive response (HR) in some plants. In P. syringae pv. tabaci (Pta), the harpin gene hrpZ has been spontaneously disrupted by an internal deletion in its open reading frame and a frame shift. The loss of the ability of the recombinant harpin polypeptide of Pta to induce HR despite the high sensitivity of tobacco plants to harpin led us to investigate the meaning of the disrupted hrpZ gene in the virulence of Pta 6605. The hrpZ gene from P. syringae pv. pisi was introduced into wild-type (WT) Pta. The hrpZ-complemented Pta secreted harpin into the culture medium, but failed to cause disease symptoms by both infiltration and spray inoculation. Inoculation with the hrpZ-complemented Pta induced defence responses in tobacco plants, whereas the defence responses of tobacco plants were not prominent on inoculation with WT Pta. These results indicate that an ancestor of Pta might have disrupted hrpZ by an internal deletion to evade plant defences and confer the ability to cause disease in tobacco plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号