首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   791篇
  免费   66篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   8篇
  2017年   4篇
  2016年   13篇
  2015年   16篇
  2014年   19篇
  2013年   47篇
  2012年   52篇
  2011年   56篇
  2010年   38篇
  2009年   31篇
  2008年   70篇
  2007年   62篇
  2006年   40篇
  2005年   60篇
  2004年   57篇
  2003年   53篇
  2002年   44篇
  2001年   14篇
  2000年   16篇
  1999年   15篇
  1998年   9篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   6篇
  1992年   10篇
  1991年   11篇
  1990年   3篇
  1989年   2篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1972年   3篇
  1964年   1篇
  1963年   1篇
排序方式: 共有857条查询结果,搜索用时 15 毫秒
81.
The BAHD family is a class of acyl-CoA-dependent acyltransferases that are involved in plant secondary metabolism and show a diverse range of specificities for acyl acceptors. Anthocyanin acyltransferases make up an important class of the BAHD family and catalyze the acylation of anthocyanins that are responsible for most of the red-to-blue colors of flowers. Here, we describe crystallographic and mutational studies of three similar anthocyanin malonyltransferases from red chrysanthemum petals: anthocyanidin 3-O-glucoside-6'-O-malonyltransferase (Dm3MaT1), anthocyanidin 3-O-glucoside-3', 6'-O-dimalonyltransferase (Dm3MaT2), and a homolog (Dm3MaT3). Mutational analyses revealed that seven amino acid residues in the N- and C-terminal regions are important for the differential acyl-acceptor specificity between Dm3MaT1 and Dm3MaT2. Crystallographic studies of Dm3MaT3 provided the first structure of a BAHD member, complexed with acyl-CoA, showing the detailed interactions between the enzyme and acyl-CoA molecules. The structure, combined with the results of mutational analyses, allowed us to identify the acyl-acceptor binding site of anthocyanin malonyltransferases, which is structurally different from the corresponding portion of vinorine synthase, another BAHD member, thus permitting the diversity of the acyl-acceptor specificity of BAHD family to be understood.  相似文献   
82.
Phosphorylation of endogenous inhibitor proteins for type-1 Ser/Thr phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and phosphatase activities. A myosin phosphatase inhibitor protein CPI-17 is phosphorylated at Thr38 through G-protein-mediated signals, resulting in a >1000-fold increase in inhibitory potency. We show here the solution NMR structure of phospho-T38-CPI-17 with rmsd of 0.36 +/- 0.06 A for the backbone secondary structure, which reveals how phosphorylation triggers a conformational change and exposes an inhibitory surface. This active conformation is stabilized by the formation of a hydrophobic core of intercalated side chains, which is not formed in a phospho-mimetic D38 form of CPI-17. Thus, the profound increase in potency of CPI-17 arises from phosphorylation, conformational change, and hydrophobic stabilization of a rigid structure that poses the phosphorylated residue on the protein surface and restricts its hydrolysis by myosin phosphatase. Our results provide structural insights into transduction of kinase signals by PP1 inhibitor proteins.  相似文献   
83.
84.
PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells   总被引:1,自引:0,他引:1  
Cultured adherent cells divide on the substratum, leading to formation of the cell monolayer. However, how the orientation of this anchorage-dependent cell division is regulated remains unknown. We have previously shown that integrin-dependent adhesion orients the spindle parallel to the substratum, which ensures this anchorage-dependent cell division. Here, we show that phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) is essential for this spindle orientation control. In metaphase, PtdIns(3,4,5)P3 is accumulated in the midcortex in an integrin-dependent manner. Inhibition of phosphatidylinositol-3-OH kinase (PI(3)K) reduces the accumulation of PtdIns(3,4,5)P3 and induces spindle misorientation. Introduction of PtdIns(3,4,5)P3 to these cells restores the midcortical accumulation of PtdIns(3,4,5)P3 and proper spindle orientation. PI(3)K inhibition causes dynein-dependent spindle rotations along the z-axis, resulting in spindle misorientation. Moreover, dynactin, a dynein-binding partner, is accumulated in the midcortex in a PtdIns(3,4,5)P3-dependent manner. We propose that PtdIns(3,4,5)P3 directs dynein/dynactin-dependent pulling forces on spindles to the midcortex, and thereby orients the spindle parallel to the substratum.  相似文献   
85.
Molecular motors such as kinesin regulate affinity to a rail protein during the ATP hydrolysis cycle. The regulation mechanism, however, is yet to be determined. To understand this mechanism, we investigated the structural fluctuations of the motor head of the single‐headed kinesin called KIF1A in different nucleotide states using molecular dynamics simulations of a Gō‐like model. We found that the helix at the microtubule (MT) binding site intermittently exhibits a large structural fluctuation when MT is absent. Frequency of this fluctuation changes systematically according to the nucleotide states and correlates strongly with the experimentally observed binding affinity to MT. We also showed that thermal fluctuation enhances the correlation and the interaction with the nucleotide suppresses the fluctuation of the helix . These results suggest that KIF1A regulates affinity to MT by changing the flexibility of the helix during the ATP hydrolysis process: the binding site becomes more flexible in the strong binding state than in the weak binding state. Proteins 2015; 83:809–819. © 2015 Wiley Periodicals, Inc.  相似文献   
86.
Type 2 diabetes (T2D) is characterized by decreased insulin sensitivity and higher concentrations of free fatty acids (FFAs) in plasma. Among FFAs, saturated fatty acids (SFAs), such as palmitate, have been suggested to promote inflammatory responses. Although many epidemiological studies have shown a link between periodontitis and T2D, little is known about the clinical significance of SFAs in periodontitis. In this study, we showed that gingival fibroblasts have cell‐surface expression of CD36, which is also known as FAT/fatty acid translocase. Moreover, CD36 expression was increased in gingival fibroblasts of high‐fat diet‐induced T2D model mice, compared with gingival fibroblasts of mice fed a normal diet. DNA microarray analysis revealed that palmitate increased mRNA expression of pro‐inflammatory cytokines and chemokines in human gingival fibroblasts (HGF). Consistent with these results, we confirmed that palmitate‐induced interleukin (IL)‐6, IL‐8, and CXCL1 secretion in HGF, using a cytokine array and ELISA. SFAs, but not an unsaturated fatty acid, oleate, induced IL‐8 production. Docosahexaenoic acid (DHA), which is one of the omega‐3 polyunsaturated fatty acids, significantly suppressed palmitate‐induced IL‐6 and IL‐8 production. Treatment of HGF with a CD36 inhibitor also inhibited palmitate‐induced pro‐inflammatory responses. Finally, we demonstrated that Porphyromonas gingivalis (P.g.) lipopolysaccharide and heat‐killed P.g. augmented palmitate‐induced chemokine secretion in HGF. These results suggest a potential link between SFAs in plasma and the pathogenesis of periodontitis. J. Cell. Physiol. 230: 2981–2989, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
  相似文献   
87.
Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality.  相似文献   
88.
A randomized, double-blind human trial was conducted to assess the effect on the plasma carotenoid concentration of 4- or 12-week astaxanthin supplementation (1 or 3 mg/d) of 20 Japanese middle-aged and senior subjects. The plasma carotenoid concentration was significantly higher after the astaxanthin supplementation than that before in both the 1 mg/d (10 subjects) and 3 mg/d (10 subjects) groups.  相似文献   
89.
It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.  相似文献   
90.
The HrpZ harpin of Pseudomonas syringae is known to induce a hypersensitive response (HR) in some plants. In P. syringae pv. tabaci (Pta), the harpin gene hrpZ has been spontaneously disrupted by an internal deletion in its open reading frame and a frame shift. The loss of the ability of the recombinant harpin polypeptide of Pta to induce HR despite the high sensitivity of tobacco plants to harpin led us to investigate the meaning of the disrupted hrpZ gene in the virulence of Pta 6605. The hrpZ gene from P. syringae pv. pisi was introduced into wild-type (WT) Pta. The hrpZ-complemented Pta secreted harpin into the culture medium, but failed to cause disease symptoms by both infiltration and spray inoculation. Inoculation with the hrpZ-complemented Pta induced defence responses in tobacco plants, whereas the defence responses of tobacco plants were not prominent on inoculation with WT Pta. These results indicate that an ancestor of Pta might have disrupted hrpZ by an internal deletion to evade plant defences and confer the ability to cause disease in tobacco plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号