首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   40篇
  593篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   12篇
  2014年   15篇
  2013年   35篇
  2012年   38篇
  2011年   35篇
  2010年   25篇
  2009年   22篇
  2008年   56篇
  2007年   47篇
  2006年   30篇
  2005年   50篇
  2004年   46篇
  2003年   44篇
  2002年   33篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有593条查询结果,搜索用时 0 毫秒
11.
12.
Virulence factor regulator (Vfr) is a member of the cyclic 3′,5′‐adenosine monophosphate (cAMP) receptor proteins that regulate the expression of many important virulence genes in Pseudomonas aeruginosa. The role of Vfr in pathogenicity has not been elucidated fully in phytopathogenic bacteria. To investigate the function of Vfr in Pseudomonas syringae pv. tabaci 6605, the vfr gene was disrupted. The virulence of the vfr mutant towards host tobacco plants was attenuated significantly, and the intracellular cAMP level was decreased. The vfr mutant reduced the expression of flagella‐, pili‐ and type III secretion system‐related genes and the defence response in nonhost Arabidopsis leaves. Furthermore, the expression levels of achromobactin‐related genes and the iron uptake ability were decreased, suggesting that Vfr regulates positively these virulence‐related genes. In contrast, the vfr mutant showed higher tolerance to antimicrobial compounds as a result of the enhanced expression of the resistance–nodulation–division family members, the mexA, mexB and oprM genes. We further demonstrated that the mutant strains of vfr and cyaA, an adenylate cyclase gene responsible for cAMP synthesis, showed a similar phenotype, suggesting that Vfr regulates virulence factors in a cAMP‐dependent manner. Because there was no significant difference in the production of acylhomoserine lactone (AHL) quorum sensing molecules in the wild‐type, vfr and cyaA mutant strains, Vfr might control important virulence factors by an AHL‐independent mechanism in an early stage of infection by this bacterium.  相似文献   
13.
Approximately 10–15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer), while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT), which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT) cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18−/−) or wild-type mice, bacterial recovery significantly increased in Jα18−/− compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18−/− compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis.  相似文献   
14.
The role of macrophage lipoprotein lipase (LpL) in the development of atherosclerosis and adiposity was examined in macrophage LpL knockout (MLpLKO) mice. MLpLKO mice were generated using cre-loxP gene targeting. Loss of LpL in macrophages did not alter plasma LpL activity or lipoprotein levels. Incubation of apolipoprotein E (ApoE)-deficient β-VLDL with peritoneal macrophages from ApoE knockout mice lacking macrophage LpL (MLpLKO/ApoEKO) led to less cholesteryl ester formation than that found with ApoEKO macrophages. MLpLKO/ApoEKO macrophages had reduced intracellular triglyceride levels, with decreased CD36 and carnitine palmitoyltransferase-1 mRNA levels compared with ApoEKO macrophages, when incubated with VLDL. Although both MLpLKO/ApoEKO and ApoEKO mice developed comparable hypercholesterolemia in response to feeding with a Western-type diet for 12 weeks, atherosclerosis was less in MLpLKO/ApoEKO mice. Epididymal fat mass and gene expression levels associated with inflammation did not differ between the two groups. In conclusion, macrophage LpL plays an important role in the development of atherosclerosis but not adiposity.  相似文献   
15.
A kind of endo-β-1, 6-glucanase has been purified from the culture filtrate of Acinetobacter sp. grown in the medium containing baker’s yeast cells as a carbon source. A 100-fold purified preparation was obtained by DEAE-Sephadex A–50 column chromatography. The enzyme hydrolyzed pustulan giving a series of gentio-oligosaccharides and glucose. Gentiotriose and gentiotetraose were hydrolyzed by this enzyme yielding glucose and gentiobiose, and glucose, gentiobiose and gentiotriose, respectively. Gentiobiose was not hydrolyzed. Baker’s yeast glucans obtained from the isolated cell walls were also hydrolyzed by this enzyme giving a series of oligosaccharides and glucose. From the action patterns on these carbohydrates, we concluded the present enzyme being endo-β-1, 6-glucanase.  相似文献   
16.
Activation of G(q)-protein-coupled receptors, including the alpha(1A)-adrenoceptor (alpha(1A)-AR), causes a sustained Ca(2+) influx via receptor-operated Ca(2+) (ROC) channels, following the transient release of intracellular Ca(2+). Transient receptor potential canonical (TRPC) channel is one of the candidate proteins constituting the ROC channels, but the precise mechanism linking receptor activation to increased influx of Ca(2+) via TRPCs is not yet fully understood. We identified Snapin as a protein interacting with the C terminus of the alpha(1A)-AR. In receptor-expressing PC12 cells, co-transfection of Snapin augmented alpha(1A)-AR-stimulated sustained increases in intracellular Ca(2+) ([Ca(2+)](i)) via ROC channels. By altering the Snapin binding C-terminal domain of the alpha(1A)-AR or by reducing cellular Snapin with short interfering RNA, the sustained increase in [Ca(2+)](i) in Snapin-alpha(1A)-AR co-expressing PC12 cells was attenuated. Snapin co-immunoprecipitated with TRPC6 and alpha(1A)-AR, and these interactions were augmented upon alpha(1A)-AR activation, increasing the recruitment of TRPC6 to the cell surface. Our data suggest a new receptor-operated signaling mechanism where Snapin links the alpha(1A)-AR to TRPC6, augmenting Ca(2+) influx via ROC channels.  相似文献   
17.
We previously demonstrated that hDREF, a human homologue of Drosophila DNA replication-related element binding factor (dDREF), is a DNA-binding protein predominantly distributed with granular structures in the nucleus. Here, glutathione S-transferase pulldown and chemical cross-linking assays showed that the carboxyl-terminal hATC domain of hDREF, highly conserved among hAT transposase family members, possesses self-association activity. Immunoprecipitation analyses demonstrated that hDREF self-associates in vivo, dependent on hATC domain. Moreover, analyses using a series of hDREF mutants carrying amino acid substitutions in the hATC domain revealed that conserved hydrophobic amino acids are essential for self-association. Immunofluorescence studies further showed that all hDREF mutants lacking self-association activity failed to accumulate in the nucleus. Self-association-defective hDREF mutants also lost association with endogenous importin beta1. Moreover, electrophoretic gel-mobility shift assays revealed that the mutations completely abolished the DNA binding activity of hDREF. These results suggest that self-association of hDREF via the hATC domain is necessary for its nuclear accumulation and DNA binding. We also found that ZBED4/KIAA0637, another member of the human hAT family, also self-associates, again dependent on the hATC domain, with deletion resulting in loss of efficient nuclear accumulation. Thus, hATC domains of human hAT family members appear to have conserved functions in self-association that are required for nuclear accumulation.  相似文献   
18.
A screening procedure was developed for the identification and quantification of distigmine bromide in serum samples by using liquid chromatography (LC)-electrospray ionization (ESI)-mass spectrometry (MS). In this method, distigmine bromide was analyzed in 0.5 mL serum by using pancuronium bromide as the internal standard, and gradient elution was performed using a reversed-phase column and a mixture of 10 mM-ammonium formate and methanol as the mobile phase. A highly sensitive assay could be performed with simple solid phase extraction using a cation exchange cartridge column by carrying out selected ion monitoring analysis in the positive ion detection mode. The procedure was validated in terms of linearity (0.9973 at 2.5 ng/mL). The inter- and intra-day precisions (coefficient of variation; CV%) were <8.5% and < 9.7%, respectively. The analytes were evaluated for stability and were found to be stable in serum for 1 week at 4 degrees C and 4 weeks at -30 degrees C, and successfully applied to in the analysis of two overdose cases. This method is sensitive and useful for the detection, quantification, and confirmation of distigmine bromide in serum.  相似文献   
19.
The human breast cancer susceptibility gene BRCA2 is required for the regulation of RAD51-mediated homologous recombinational repair. BRCA2 interacts with RAD51 monomers, as well as nucleoprotein filaments, primarily though the conserved BRC motifs. The unrelated C-terminal region of BRCA2 also interacts with RAD51. Here we show that the BRCA2 C terminus interacts directly with RAD51 filaments, but not monomers, by binding an interface created by two adjacent RAD51 protomers. These interactions stabilize filaments so that they cannot be dissociated by association with BRC repeats. Interaction of the BRCA2 C terminus with the RAD51 filament causes a large movement of the flexible RAD51 N-terminal domain that is important in regulating filament dynamics. We suggest that interactions of the BRCA2 C-terminal region with RAD51 may facilitate efficient nucleation of RAD51 multimers on DNA and thereby stimulate recombination-mediated repair.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号