首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   18篇
  358篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   14篇
  2013年   17篇
  2012年   16篇
  2011年   27篇
  2010年   6篇
  2009年   11篇
  2008年   31篇
  2007年   14篇
  2006年   18篇
  2005年   24篇
  2004年   11篇
  2003年   21篇
  2002年   16篇
  2001年   6篇
  2000年   10篇
  1999年   11篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   7篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1972年   3篇
  1969年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有358条查询结果,搜索用时 9 毫秒
101.
Among individual cells of the same source and type, the complex shear modulus GG exhibits a large log-normal distribution that is the result of spatial, temporal, and intrinsic variations. Such large distributions complicate the statistical evaluation of pharmacological treatments and the comparison of different cell states. However, little is known about the characteristic features of cell-to-cell variation. In this study, we investigated how this variation depends on the spatial location within the cell and on the actin filament cytoskeleton, the organization of which strongly influences cell mechanics. By mechanically probing fibroblasts arranged on a microarray, via atomic force microscopy, we observed that the standard deviation σ   of GG was significantly reduced among cells in which actin filaments were depolymerized. The parameter σ also exhibited a subcellular spatial dependence. Based on our findings regarding the frequency dependence of σ   of the storage modulus GG, we proposed two types of cell-to-cell variation in GG that arise from the purely elastic and the frequency-dependent components in terms of the soft glassy rheology model of cell deformability. We concluded that the latter inherent cell-to-cell variation can be reduced greatly by disrupting actin networks, by probing at locations within the cell nucleus boundaries distant from the cell center, and by measuring at high loading frequencies.  相似文献   
102.
From porcine thyroid cell membranes, we purified five GTP-binding proteins (G-proteins); Nos. 1 to 3 have 41-kDa alpha-subunits, and Nos. 4 and 5 have 40-kDa alpha-subunits. They were chromatographically (Mono Q) separable and served as specific substrates for islet-activating protein (pertussis toxin). G-proteins 1 and 2 were indistinguishable from porcine brain Gi1 with respect to three criteria, i.e., mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pI of the ADP-ribosylated alpha-subunit, and immunoreactivity. G-protein 3 was identified as Gi3 by immunoreactivity. The SDS-PAGE and isoelectric focusing (IEF) analyses identified G-proteins 4 and 5 as being chromatographically heterogeneous subtypes of Gi2 in comparison with a pure porcine brain preparation. The IEF analysis also disclosed that each of the Gi1, Gi2, and Gi3 subspecies isolated in the present study has a minor component characterized by a slightly lower pI of its alpha-subunit. We conclude that porcine thyroid tissue contains at least Gi1, Gi2, and Gi3, and that each is made up of heterogeneous populations.  相似文献   
103.
We examined whether capsaicin-sensitive sensory neurons might be involved in the increase in the gastric tissue level of prostaglandins, thereby contributing to the reduction of water immersion restraint stress (WIR)-induced gastric mucosal injury in rats. Gastric tissue levels of calcitonin gene-related peptide (CGRP), 6-keto-PGF1alpha, and PGE2 were transiently increased 30 min after WIR. These increases were significantly inhibited by subcutaneous injection of capsazepine (CPZ), a vanilloid receptor antagonist, and by functional denervation of capsaicin-sensitive sensory neurons induced by the administration of high-dose capsaicin. The administration of capsaicin (orally) and CGRP (intravenously) significantly enhanced the WIR-induced increases in the gastric tissue level of prostaglandins 30 min after WIR, whereas CGRP-(8-37), a CGRP receptor antagonist, significantly inhibited them. Pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of nitric oxide (NO) synthase (NOS), and that with indomethacin inhibited the WIR-induced increases in gastric tissue levels of prostaglandins, whereas either pretreatment with aminoguanidine (AG), a selective inhibitor of the inducible form of NOS, or that with NS-398, a selective inhibitor of cyclooxygenase (COX)-2, did not affect them. CPZ, the functional denervation of capsaicin-sensitive sensory neurons, and CGRP-(8-37) significantly increased gastric MPO activity and exacerbated the WIR-induced gastric mucosal injury in rats subjected to 4-h WIR. The administration of capsaicin and CGRP significantly increased the gastric tissue levels of prostaglandins and inhibited both the WIR-induced increases in gastric MPO activity and gastric mucosal injury 8 h after WIR. These effects induced by capsaicin and CGRP were inhibited by pretreatment with L-NAME and indomethacin but not by pretreatment with AG and NS-398. These observations strongly suggest that capsaicin-sensitive sensory neurons might release CGRP, thereby increasing the gastric tissue levels of PGI2 and PGE2 by activating COX-1 through activation of the constitutive form of NOS in rats subjected to WIR. Such activation of capsaicin-sensitive sensory neurons might contribute to the reduction of WIR-induced gastric mucosal injury mainly by inhibiting neutrophil activation.  相似文献   
104.
105.
106.
Various sources of superoxide dismutases (SOD) suppressed ischaemic paw oedemata (tourniquet poditis) of mice, rats and guinea pigs with different potencies. Intravenous (i.v.) dosing of mouse Cu, Zn-SOD had no effect on mouse ischaemic oedema, yet rat and guinea pig Cu, Zn-SOD suppressed ischaemic oedemata of rats and guinea pigs. Homologous SOD was anti-inflammatory at least in these two models. Guinea pig SOD was one of the most potent in all models, but showed a very narrow range of effective dose. This bell-shape suppressive pattern was ameliorated by concomitant catalase injection. Bovine and human Cu, Zn-SOD had a rather broad range of effective dose. Bacterial Mn-SODS were suppressive in mice, as well as the oxygen radical scavenger MK-447 and cytochrome c. Dexamethasone was effective only when administered more than 3 hrs in advance. As ischaemic paw oedema of mice was not sensitive to cyclooxy-genase and lipoxygenase inhibitors, this model could serve for screening new types of anti-inflammatory or anti-ischaemic drugs.  相似文献   
107.
A novel member of the human CMP-NeuAc:beta-galactoside alpha2, 3-sialyltransferase (ST) subfamily, designated ST3Gal VI, was identified based on BLAST analysis of expressed sequence tags, and a cDNA clone was isolated from a human melanoma line library. The sequence of ST3Gal VI encoded a type II membrane protein with 2 amino acids of cytoplasmic domain, 32 amino acids of transmembrane region, and a large catalytic domain with 297 amino acids; and showed homology to previously cloned ST3Gal III, ST3Gal IV, and ST3Gal V at 34, 38, and 33%, respectively. Extracts from L cells transfected with ST3Gal VI cDNA in a expression vector and a fusion protein with protein A showed an enzyme activity of alpha2, 3-sialyltransferase toward Galbeta1,4GlcNAc structure on glycoproteins and glycolipids. In contrast to ST3Gal III and ST3Gal IV, this enzyme exhibited restricted substrate specificity, i.e. it utilized Galbeta1,4GlcNAc on glycoproteins, and neolactotetraosylceramide and neolactohexaosylceramide, but not lactotetraosylceramide, lactosylceramide, or asialo-GM1. Consequently, these data indicated that this enzyme is involved in the synthesis of sialyl-paragloboside, a precursor of sialyl-Lewis X determinant.  相似文献   
108.
109.
Shear stress-dependent nitric oxide (NO) formation prevents immoderate vascular constriction. We examined whether shear stress-dependent NO formation limits exercise-induced coronary artery constriction after beta-adrenergic receptor blockade in dogs. Control exercise led to increases (P < 0.01) in coronary blood flow (CBF) by 38 +/- 5 ml/min from 41 +/- 5 ml/min and in the external diameter of epicardial coronary arteries (CD) by 0.24 +/- 0.03 mm from 3.33 +/- 0.20 mm. CD and shear stress were linearly related. After propranolol, CD fell (P < 0.01) during exercise (0.08 +/- 0.03 from 3.23 +/- 0.19 mm), and the slope of the relationship between CD and shear stress was reduced (P < 0.01). This slope was not further altered by the additional blockade of NO formation. In propranolol-treated resting dogs, flow-dependent effects of intracoronary adenosine to mimic exercise-induced increases in shear stress (after propranolol) led to increases (P < 0.01) in CD (0.09 +/- 0.02 from 3.68 +/- 0.27 mm). Thus both shear stress-dependent NO formation and beta-adrenergic receptor activation are required to cause CD dilation during exercise. Suppression of beta-adrenergic receptor activation leads to impaired shear stress-dependent NO formation and allows alpha-adrenergic constriction to become dominant.  相似文献   
110.
Plexins belonging to the plexin-A subfamily form complexes with neuropilins and propagate signals of class 3 semaphorins into neurons, even though they do not directly bind the semaphorins. In this study, we identified a new member of the plexin-A subfamily in the mice, plexin-A4, and showed that it was expressed in the developing nervous system with a pattern different to that of other members of the plexin-A subfamily (plexin-A1, plexin-A2 and plexin-A3). COS-7 cells coexpressing plexin-A4 with neuropilin-1 were induced to contract by Sema3A, a member of the class 3 semaphorin. Ectopic expression of plexin-A4 in mitral cells that are originally insensitive to Sema3A resulted in the collapse of growth cones in the presence of Sema3A. These results suggest that plexin-A4 plays a role in the propagation of Sema3A activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号