首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   4篇
  84篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  1999年   1篇
  1993年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
31.
Four cDNA clones (SlArf/Xyl1‐4) encoding α‐l ‐arabinofuranosidase/β‐xylosidase belonging to glycoside hydrolase family 3 were obtained from tomato (Solanum lycopersicum) fruit. SlArf/Xyl1 was expressed in various organs. Its level was particularly high in flower and leaves but low in fruit. SlArf/Xyl3 was highly expressed in flower. On the contrary, SlArf/Xyl2 and 4 were expressed in early developmental stage in various organs. Comparison with SlArf/Xyl4, SlArf/Xyl2 expression was observed in earlier stages. The active recombinant proteins were obtained by using BY‐2 tobacco (Nicotiana tabacum) suspension cultured cells. The SlArf/Xyl1 and 2 recombinant proteins showed a bi‐functional activity of α‐l ‐arabinofuranosidase/β‐xylosidase while the SlArf/Xyl4 protein possessed a β‐xylosidase activity predominantly. Neither enzyme activities were detected for the SlArf/Xyl3 protein under the same conditions. Although SlArf/Xyl2 possessed a bi‐functional activity, it preferentially hydrolyzed arabinosyl residues from tomato hemicellulosic polysaccharides. Antisense suppression of SlArf/Xyl2 resulted in no apparent changes in the enzyme activities, monosaccharide composition or fruit phenotype. Increment of a family 51 α‐l ‐arabinofuranosidase expression rather than that of family 3 resulted in a restoring the activity in SlArf/Xyl2‐suppressed fruit. The ability of recombinant SlArf/Xyl2 to hydrolyze both arabinan and arabinoxylan is nearly identical to that of α‐l ‐arabinofuranosidases belonging to family 51. Our results suggested that BY‐2 cells are a useful expression system for obtaining active cell wall hydrolyzing enzymes. In addition, an α‐l ‐arabinofuranosidase activity derived from SlArf/Xyl2 would be essential in young organ development and the action of the enzyme could be restored by the other enzyme belonging to a different family under a defective condition.  相似文献   
32.
Antisense oligonucleotide (ASO)-based therapy is one of the next-generation therapy, especially targeting neurological disorders. Many cases of ASO-dependent gene expression suppression have been reported. Recently, we developed a tocopherol conjugated DNA/RNA heteroduplex oligonucleotide (Toc-HDO) as a new type of drug. Toc-HDO is more potent, stable, and efficiently taken up by the target tissues compared to the parental ASO. However, the detailed mechanisms of Toc-HDO, including its binding proteins, are unknown. Here, we developed native gel shift assays with fluorescence-labeled nucleic acids samples extracted from mice livers. These assays revealed two Toc-HDO binding proteins, annexin A5 (ANXA5) and carbonic anhydrase 8 (CA8). Later, we identified two more proteins, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) and flap structure-specific endonuclease 1 (FEN1) by data mining. shRNA knockdown studies demonstrated that all four proteins regulated Toc-HDO activity in Hepa1–6, mouse hepatocellular cells. In vitro binding assays and fluorescence polarization assays with purified recombinant proteins characterized the identified proteins and pull-down assays with cell lysates demonstrated the protein binding to the Toc-HDO and ASO in a biological environment. Taken together, our findings provide a brand new molecular biological insight as well as future directions for HDO-based disease therapy.  相似文献   
33.
Gene trapping in embryonic stem (ES) cells is a proven method for large‐scale random insertional mutagenesis in the mouse genome. We have established an exchangeable gene trap system, in which a reporter gene can be exchanged for any other DNA of interest through Cre/mutant lox‐mediated recombination. We isolated trap clones, analyzed trapped genes, and constructed the database for Exchangeable Gene Trap Clones (EGTC) [ http://egtc.jp ]. The number of registered ES cell lines was 1162 on 31 August 2013. We also established 454 mouse lines from trap ES clones and deposited them in the mouse embryo bank at the Center for Animal Resources and Development, Kumamoto University, Japan. The EGTC database is the most extensive academic resource for gene‐trap mouse lines. Because we used a promoter‐trap strategy, all trapped genes were expressed in ES cells. To understand the general characteristics of the trapped genes in the EGTC library, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway analysis and found that the EGTC ES clones covered a broad range of pathways. We also used Gene Ontology (GO) classification data provided by Mouse Genome Informatics (MGI) to compare the functional distribution of genes in each GO term between trapped genes in the EGTC mouse lines and total genes annotated in MGI. We found the functional distributions for the trapped genes in the EGTC mouse lines and for the RefSeq genes for the whole mouse genome were similar, indicating that the EGTC mouse lines had trapped a wide range of mouse genes.  相似文献   
34.
One of the major pathological hallmarks of Alzheimer disease is neurofibrillary tangles. Neurofibrillary tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. Cyclin-dependent kinase 5 (Cdk5) is one of the tau protein kinases that increase paired helical filament epitopes in tau by phosphorylation. Recently, various mutations of tau have been identified in frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we investigated the phosphorylation of FTDP-17 mutant tau proteins, K257T, P301L, P301S, and R406W, by Cdk5 complexed with p35, p25, or p39 in vitro and in cultured cells. The extent of phosphorylation by all Cdk5 species was slightly lower in mutant tau than in wild-type tau. Major phosphorylation sites, including Ser202, Ser235, and Ser404, were the same among the wild-type, K257T, P301L, and P301S tau proteins phosphorylated by any Cdk5. On the other hand, R406W tau was less phosphorylated at Ser404 than were the other variants. This was not due to the simple replacement of amino acid Arg406 with Trp close to the phosphorylation site, because Ser404 in a R406W peptide was equally phosphorylated in a wild-type peptide. The decreased phosphorylation of mutant tau by Cdk5s was canceled when tau protein bound to microtubules was phosphorylated. These results indicate that FTDP-17 mutations do not affect the phosphorylatability of tau by Cdk5 complexed with p35, p25, or p39 and may explain part of the discrepancy reported previously between in vivo and in vitro phosphorylation of FTDP-17 tau mutants.  相似文献   
35.
36.
37.
L-cysteine is ubiquitous in all living organisms and is involved in a variety of functions, including the synthesis of iron-sulfur clusters and glutathione and the regulation of the structure, stability, and catalysis of proteins. In the protozoan parasite Entamoeba histolytica, the causative agent of amebiasis, L-cysteine plays an essential role in proliferation, adherence, and defense against oxidative stress; however, the essentiality of this amino acid in the pathways it regulates is not well understood. In the present study, we applied capillary electrophoresis time-of-flight mass spectrometry to quantitate charged metabolites modulated in response to L-cysteine deprivation in E. histolytica, which was selected as a model for examining the biological roles of L-cysteine. L-cysteine deprivation had profound effects on glycolysis, amino acid, and phospholipid metabolism, with sharp decreases in the levels of L-cysteine, L-cystine, and S-adenosylmethionine and a dramatic accumulation of O-acetylserine and S-methylcysteine. We further demonstrated that S-methylcysteine is synthesized from methanethiol and O-acetylserine by cysteine synthase, which was previously considered to be involved in sulfur-assimilatory L-cysteine biosynthesis. In addition, L-cysteine depletion repressed glycolysis and energy generation, as it reduced acetyl-CoA, ethanol, and the major nucleotide di- and triphosphates, and led to the accumulation of glycolytic intermediates. Interestingly, L-cysteine depletion increased the synthesis of isopropanolamine and phosphatidylisopropanolamine, and it was confirmed that their increment was not a result of oxidative stress but was a specific response to L-cysteine depletion. We also identified a pathway in which isopropanolamine is synthesized from methylglyoxal via aminoacetone. To date, this study represents the first case where L-cysteine deprivation leads to drastic changes in core metabolic pathways, including energy, amino acid, and phospholipid metabolism.  相似文献   
38.
We describe here the design, synthesis and biological evaluation of a series of molecules toward the development of novel peptidomimetic inhibitors of SARS-CoV 3CLpro. A docking study involving binding between the initial lead compound 1 and the SARS-CoV 3CLpro motivated the replacement of a thiazole with a benzothiazole unit as a warhead moiety at the P1′ site. This modification led to the identification of more potent derivatives, including 2i, 2k, 2m, 2o, and 2p, with IC50 or Ki values in the submicromolar to nanomolar range. In particular, compounds 2i and 2p exhibited the most potent inhibitory activities, with Ki values of 4.1 and 3.1 nM, respectively. The peptidomimetic compounds identified through this process are attractive leads for the development of potential therapeutic agents against SARS. The structural requirements of the peptidomimetics with potent inhibitory activities against SARS-CoV 3CLpro may be summarized as follows: (i) the presence of a benzothiazole warhead at the S1′-position; (ii) hydrogen bonding capabilities at the cyclic lactam of the S1-site; (iii) appropriate stereochemistry and hydrophobic moiety size at the S2-site and (iv) a unique folding conformation assumed by the phenoxyacetyl moiety at the S4-site.  相似文献   
39.
We have previously shown that the proteasome activator PA28 is essential to Hsp90-dependent protein refolding in vitro, where PA28 mediates transfer of the Hsp90-bound substrate protein to the Hsc70/Hsp40 chaperone machine for its correct refolding. This observation suggests that PA28 may also collaborate with Hsp90 in cells. To examine this possibility, here we have used double-stranded RNA interference (RNAi) against PA28 in Caenorhabditis elegans mutants of daf-21, which encodes Hsp90. We show that C. elegans PA28 facilitates Hsp90-initiated protein refolding, albeit with an activity lower than that of mouse PA28 proteins. RNAi-mediated knockdown of PA28 significantly suppresses the Daf-c (dauer formation constitutive) phenotype of the daf-21 mutant, but it has no affect on the distinct defects of this mutant in sensing odorants. Taking these results together, we conclude that PA28 is likely to function in collaboration with Hsp90 in vivo.  相似文献   
40.

Background

Topical therapy is effective for dry eye, and its prolonged effects should help in maintaining the quality of life of patients with dry eye. We previously reported that the oral administration of rebamipide (Reb), a mucosal protective agent, had a potent therapeutic effect on autoimmune lesions in a murine model of Sjögren''s syndrome (SS). However, the effects of topical treatment with Reb eyedrops on the ocular lesions in the murine model of SS are unknown.

Methods and Finding

Reb eyedrops were administered to the murine model of SS aged 4–8 weeks four times daily. Inflammatory lesions of the extraorbital and intraorbital lacrimal glands and Harderian gland tissues were histologically evaluated. The direct effects of Reb on the lacrimal glands were analyzed using cultured lacrimal gland cells. Tear secretions of Reb-treated mice were significantly increased compared with those of untreated mice. In addition to the therapeutic effect of Reb treatment on keratoconjunctivitis, severe inflammatory lesions of intraorbital lacrimal gland tissues in this model of SS were resolved. The mRNA expression levels of IL-10 and mucin 5Ac in conjunctival tissues from Reb-treated mice was significantly increased compared with those of control mice. Moreover, lactoferrin production from lacrimal gland cells was restored by Reb treatment.

Conclusion

Topical Reb administration had an anti-inflammatory effect on the ocular autoimmune lesions in the murine model of SS and a protective effect on the ocular surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号