首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  1999年   1篇
  1993年   1篇
排序方式: 共有84条查询结果,搜索用时 46 毫秒
71.
Using N2 cavitation, we established a protocol to prepare the active mitochondria from Plasmodium falciparum showing a higher succinate dehydrogenase activity than previously reported and a dihydroorotate-dependent respiration. The fact that fumarate partially inhibited the dihydroorotate dependent respiration suggests that complex II (succinate–ubiquinone reductase/quinol–fumarate reductase) in the erythrocytic stage cells of P. falciparum functions as a quinol–fumarate reductase.  相似文献   
72.
We investigated whether artepillin C, a major component of Brazilian propolis, acts as a neurotrophic-like factor in rat PC12m3 cells, in which nerve growth factor (NGF)-induced neurite outgrowth is impaired. When cultures of PC12m3 cells were treated with artepillin C at a concentration of 20 μM, the frequency of neurite outgrowth induced by artepillin C was approximately 7-fold greater than that induced by NGF alone. Artepillin C induced-neurite outgrowth of PC12m3 cells was inhibited by the ERK inhibitor U0126 and by the p38 MAPK inhibitor SB203580. Although artepillin C-induced p38 MAPK activity was detected in PC12m3 cells, phosphorylation of ERK induced by artepillin C was not observed. On the other hand, artepillin C caused rapid activation of ERK and the time course of the activation was similar to that induced by NGF treatment in PC12 parental cells. However, NGF-induced neurite outgrowth was inhibited by artepillin C treatment. Interestingly, inhibition of ERK by U0126 completely prevented artepillin C-induced p38 MAPK phosphorylation of PC12m3 cells. These findings suggest that artepillin C-induced activation of p38 MAPK through the ERK signaling pathway is responsible for the neurite outgrowth of PC12m3 cells.  相似文献   
73.
The primary purpose of the present study was to investigate whether DNA replication at meiotic prophase also requires replication factors, especially proliferating cell nuclear antigen (PCNA). We cloned PCNA cDNAs (CoPCNA) from a cDNA library made from basidia of the basidiomycete, Coprinus cinereus. Interestingly, although CoPCNA is a single-copy gene in the genome, two different PCNA cDNA species were isolated using degenerate primers and a meiotic cDNA library, and were designated as CoPCNA-alpha and CoPCNA-beta. CoPCNA-beta was made by truncating at specific sites in CoPCNA-alpha mRNA, 5'-AAGAAGGAGAAG-3' and 5'-GAAGAGGAAGAA-3'. Both of these sequences were present in exon IV in the genomic sequence, and interestingly the former was the same as the inverse sequence of the latter. CoPCNA-alpha was 107 amino acids larger than human PCNA, and so the 107 amino-acid sequence was inserted in a loop, the so-called D2E2 loop, in human PCNA. Northern blotting analysis indicated that CoPCNA was expressed not only at premeiotic S but also at the meiotic prophase stages such as leptotene and early zygotene, just before and when karyogamy occurs and the homologous chromosomes pair. Western blotting analysis using anti-(CoPCNA-alpha) Ig revealed that at least two CoPCNA mRNAs before and after truncation were translated at the meiotic prophase as CoPCNA-alpha and CoPCNA-beta.  相似文献   
74.
Lignins are major cell wall components formed by the dehydrogenative polymerization of three monolignols, p-coumaryl, coniferyl and sinapyl alcohols. We prepared lignin-carbohydrate complexes (Fr. VI and Fr. VII) from pine cones by acid and ethanol precipitation, and investigated which part of these molecules is essential for expression of biological activities. They showed potent antiviral activity upon direct interaction with the virus. The antiviral activity of Frs. VI and VII required the higher-order structure of polyphenols without polysaccharides. Pretreatment of mice with Fr. VI or VII induced higher antiparasite activity than those of natural and chemically modified antitumor polysaccharides. Fr. VI or VII at higher concentrations enhanced the radical intensity and cytotoxic activity of vitamin C, whereas tannins counteracted the effect of vitamin C. Fr. VI at lower concentrations enhanced the O2(-)-scavenging activity of vitamin C. Frs. VI and VII stimulated mouse macrophage-like cells Raw 264.7 to produce nitric oxide (NO), citrulline (CIT) and asparagine (ASN), via the enhanced expression of iNOS and ASN synthetase, whereas phenylpropenoid monomers and polymers inhibited NO/CIT/ASN production. These data suggest that the polymerized structure of phenylpropenoids in lignin-carbohydrate complexes is required for the induction of antiviral activity, and that the higher-order structure of phenylpropenoid polymers and polysaccharides is required for immunopotentiation, including macrophage activation.  相似文献   
75.

Background

Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF) and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gαq) -coupled receptor (GPCR) signaling still remains unknown. We investigated these inhibitory effects of nicorandil in transgenic mice with transient cardiac expression of activated Gαq (Gαq-TG).

Methodology/Principal Findings

Nicorandil (6 mg/kg/day) or vehicle was chronically administered to Gαq-TG from 8 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic nicorandil administration prevented the severe reduction of left ventricular fractional shortening and inhibited ventricular interstitial fibrosis in Gαq-TG. SUR-2B and SERCA2 gene expression was decreased in vehicle-treated Gαq-TG but not in nicorandil-treated Gαq-TG. eNOS gene expression was also increased in nicorandil-treated Gαq-TG compared with vehicle-treated Gαq-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 7 of 10 vehicle-treated Gαq-TG but in none of 10 nicorandil-treated Gαq-TG. The QT interval was significantly shorter in nicorandil-treated Gαq-TG than vehicle-treated Gαq-TG. Acute nicorandil administration shortened ventricular monophasic action potential duration and reduced the number of PVCs in Langendorff-perfused Gαq-TG mouse hearts. Moreover, HMR1098, a blocker of cardiac sarcolemmal KATP channels, significantly attenuated the shortening of MAP duration induced by nicorandil in the Gαq-TG heart.

Conclusions/Significance

These findings suggest that nicorandil can prevent the development of HF and ventricular arrhythmia caused by the activation of GPCR signaling through the shortening of the QT interval, action potential duration, the normalization of SERCA2 gene expression. Nicorandil may also improve the impaired coronary circulation during HF.  相似文献   
76.
NUAK1 is a member of the AMP-activated protein kinase-related kinase family. Recent studies have shown that NUAK1 is involved in cellular senescence and motility in epithelial cells and fibroblasts. However, the physiological roles of NUAK1 are poorly understood because of embryonic lethality in NUAK1 null mice. The purpose of this study was to elucidate the roles of NUAK1 in adult tissues. We determined the tissue distribution of NUAK1 and generated muscle-specific NUAK1 knock-out (MNUAK1KO) mice. For phenotypic analysis, whole body glucose homeostasis and muscle glucose metabolism were examined. Quantitative phosphoproteome analysis of soleus muscle was performed to understand the molecular mechanisms underlying the knock-out phenotype. Nuak1 mRNA was preferentially expressed in highly oxidative tissues such as brain, heart, and soleus muscle. On a high fat diet, MNUAK1KO mice had a lower fasting blood glucose level, greater glucose tolerance, higher insulin sensitivity, and higher concentration of muscle glycogen than control mice. Phosphoproteome analysis revealed that phosphorylation of IRS1 Ser-1097 was markedly decreased in NUAK1-deficient muscle. Consistent with this, insulin signaling was enhanced in the soleus muscle of MNUAK1KO mice, as evidenced by increased phosphorylation of IRS1 Tyr-608, AKT Thr-308, and TBC1D4 Thr-649. These observations suggest that a physiological role of NUAK1 is to suppress glucose uptake through negative regulation of insulin signaling in oxidative muscle.  相似文献   
77.
KPU-105 (4), a potent anti-microtubule agent that contains a benzophenone was derived from the diketopiperazine-type vascular disrupting agent (VDA) plinabulin 3, which displays colchicine-like tubulin depolymerization activity. To develop derivatives with more potent anti-microtubule and cytotoxic activities, we further modified the benzophenone moiety of 4. Accordingly, we obtained a 4-fluorobenzophenone derivative 16j that inhibited tumor cell growth in vitro with a subnanomolar IC(50) value against HT-29 cells (IC(50)=0.5 nM). Next, the effect of 16j on mitotic spindles was evaluated in HeLa cells. Treatment with 3nM of 16j partially disrupted the interphase microtubule network. By contrast, treatment with the same concentration of CA-4 barely affected the microtubule network, indicating that 16j exhibited more potent anti-mitotic effects than did CA-4.  相似文献   
78.
Sumoylation is a post-translational modification system that covalently attaches the small ubiquitin-related modifier (SUMO) to target proteins. Ubc9 is required as the E2-type enzyme for SUMO-1 conjugation to targets. Here, we show that Ubc9 interacts with the meiosis-specific RecA homolog, Lim15/Dmc1 in the basidiomycete Coprinus cinereus (CcLim15), and mediates sumoylation of CcLim15 during meiosis. In vitro protein-protein interaction assays revealed that CcUbc9 interacts with CcLim15 and binds to the C-terminus (amino acids 105-347) of CcLim15, which includes the ATPase domain. Immunocytochemistry demonstrates that CcUbc9 and CcLim15 colocalize in the nuclei from the leptotene stage to the early pachytene stage during meiotic prophase I. Coimmunoprecipitation experiments indicate that CcUbc9 interacts with CcLim15 in vivo during meiotic prophase I. Furthermore, we show that CcLim15 is a target protein of sumoylation both in vivo and in vitro, and identify the C-terminus (amino acids 105-347) of CcLim15 as the site of sumoylation in vitro. These results suggest that sumoylation is a candidate modulator of meiotic recombination via interaction between Ubc9 and Lim15/Dmc1.  相似文献   
79.
When faced with nonadapted fungal pathogens, Arabidopsis thaliana mounts nonhost resistance responses, which typically result in the termination of early pathogenesis steps. We report that nonadapted anthracnose fungi engage two alternative entry modes during pathogenesis on leaves: turgor-mediated invasion beneath melanized appressoria, and a previously undiscovered hyphal tip–based entry (HTE) that is independent of appressorium formation. The frequency of HTE is positively regulated by carbohydrate nutrients and appears to be subject to constitutive inhibition by the fungal mitogen-activated protein kinase (MAPK) cascade of MAPK ESSENTIAL FOR APPRESSORIUM FORMATION1. The same MAPK cascade is essential for appressorium formation. Unexpectedly, the Arabidopsis indole glucosinolate pathway restricts entry of the nonadapted anthracnose fungi only when these pathogens employ HTE. Arabidopsis mutants defective in indole glucosinolate biosynthesis or metabolism support the initiation of postinvasion growth of nonadapted Colletotrichum gloeosporioides and Colletotrichum orbiculare. However, genetic disruption of Colletotrichum appressorium formation does not permit HTE on host plants. Thus, Colletotrichum appressoria play a critical role in the suppression of preinvasion plant defenses, in addition to their previously described role in turgor-mediated plant cell invasion. We also show that HTE is the predominant morphogenetic response of Colletotrichum at wound sites. This implies the existence of a fungal sensing system to trigger appropriate morphogenetic responses during pathogenesis at wound sites and on intact leaf tissue.  相似文献   
80.
Leucine aminopeptidase during meiotic development.   总被引:1,自引:0,他引:1  
We found a leucine aminopeptidase (LAP; EC 3.4.11.1) to be abundant in meiotic prophase tissue of a basidiomycete, Coprinus cinereus. After direct purification of the aminopeptidase component from meiocytes, we cloned the gene by degenerate PCR using partial amino-acid sequences of the purified enzyme and 5' and 3' RACE. It was homologous to the eukaryotic leucine aminopeptidase gene. The recombinant protein possesses the characteristic activities of a Coprinus leucine aminopeptidase (CoLAP) with a molecular mass of 52.4 kDa, and forms a homohexamer. Northern blot and spatial distribution analysis by immunohistochemical staining indicated CoLAP to be abundant in meiotic prophase cells and the supporting cells around meiocytes, but scarce in mycelium cells. Interestingly, from zygotene to pachytene, CoLAP was mostly present in supporting cells around meiocytes, but from diplotene onwards, it was plentiful in meiocytes themselves, suggesting that its expression is required to control some of the biochemical events at meiotic prophase. Moreover, the strong expression of CoLAP mRNA immediately after treatment with methyl methanesulfonate in mycelium implies that CoLAP has a role in somatic DNA repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号