首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1464篇
  免费   90篇
  国内免费   3篇
  1557篇
  2022年   8篇
  2021年   13篇
  2020年   18篇
  2019年   15篇
  2018年   18篇
  2017年   24篇
  2016年   21篇
  2015年   30篇
  2014年   41篇
  2013年   87篇
  2012年   69篇
  2011年   59篇
  2010年   43篇
  2009年   37篇
  2008年   77篇
  2007年   74篇
  2006年   68篇
  2005年   86篇
  2004年   64篇
  2003年   59篇
  2002年   68篇
  2001年   67篇
  2000年   49篇
  1999年   36篇
  1998年   22篇
  1997年   15篇
  1996年   14篇
  1995年   21篇
  1994年   17篇
  1993年   14篇
  1992年   35篇
  1991年   29篇
  1990年   24篇
  1989年   24篇
  1988年   22篇
  1987年   28篇
  1986年   16篇
  1985年   15篇
  1984年   9篇
  1983年   14篇
  1981年   9篇
  1980年   8篇
  1978年   7篇
  1977年   9篇
  1976年   14篇
  1975年   7篇
  1973年   10篇
  1971年   5篇
  1967年   7篇
  1965年   5篇
排序方式: 共有1557条查询结果,搜索用时 46 毫秒
91.
Intra-abdominal fat accumulation is involved in development of the metabolic syndrome, which is associated with insulin and leptin resistance. We show here that ectopic expression of very low levels of uncoupling protein 1 (UCP1) in epididymal fat (Epi) reverses both insulin and leptin resistance. UCP1 expression in Epi improved glucose tolerance and decreased food intake in both diet-induced and genetically obese mouse models. In contrast, UCP1 expression in Epi of leptin-receptor mutant mice did not alter food intake, though it significantly decreased blood glucose and insulin levels. Thus, hypophagia induction requires a leptin signal, while the improved insulin sensitivity appears to be leptin independent. In wild-type mice, local-nerve dissection in the epididymis or pharmacological afferent blockade blunted the decrease in food intake, suggesting that afferent-nerve signals from intra-abdominal fat tissue regulate food intake by modulating hypothalamic leptin sensitivity. These novel signals are potential therapeutic targets for the metabolic syndrome.  相似文献   
92.
93.
Autotaxin, a lysophospholipase D encoded by the Enpp2 gene, is an exoenzyme that produces lysophosphatidic acid in the extracellular space. Lysophosphatidic acid acts on specific G protein-coupled receptors, thereby regulating cell growth, migration, and survival. Previous studies have revealed that Enpp2−/− mouse embryos die at about embryonic day (E) 9.5 because of angiogenic defects in the yolk sac. However, what cellular defects occur in Enpp2−/− embryos and what intracellular signaling pathways are involved in the phenotype manifestation remain unknown. Here, we show that Enpp2 is required to form distinctive large lysosomes in the yolk sac visceral endoderm cells. From E7.5 to E9.5, Enpp2 mRNA is abundantly expressed in the visceral endoderm cells. In Enpp2−/− mouse embryos, lysosomes in the visceral endoderm cells are fragmented. By using a whole embryo culture system combined with specific pharmacological inhibitors for intracellular signaling molecules, we show that lysophosphatidic acid receptors and the Rho-Rho-associated coiled-coil containing protein kinase (ROCK)-LIM kinase pathway are required to form large lysosomes. In addition, electroporation of dominant negative forms of Rho, ROCK, or LIM kinase also leads to the size reduction of lysosomes in wild-type visceral endoderm cells. In Enpp2−/− visceral endoderm cells, the steady-state levels of cofilin phosphorylation and actin polymerization are reduced. In addition, perturbations of actin turnover dynamics by actin inhibitors cytochalasin B and jasplakinolide result in the defect in lysosome formation. These results suggest that constitutive activation of the Rho-ROCK-LIM kinase pathway by extracellular production of lysophosphatidic acid by the action of autotaxin is required to maintain the large size of lysosomes in visceral endoderm cells.  相似文献   
94.
Transfer of phospholipid from the envelope of hemagglutinating virus of Japan (HVJ) to erythrocyte (RBC) membrane and the virus-induced transfer of phospholipid between RBC membranes were studied using spin-labeled phosphatidylcholine (PC). The transfer of PC from membranes labeled densely with PC to unlabeled membranes was followed by the peak height increase in the electron spin resonance spectrum. The two kinds of transfer reactions took place very rapidly as reported previously. To obtain further details, the transfer reactions were studied with HVJ, HVJ inactivated by trypsin, HVJ harvested early, HVJ grown in fibroblast cells, the fibroblast HVJ activated by trypsin, influenza virus, and glutaraldehyde-treated RBCs. The results demonstrated that the viral F glycoprotein played a crucial role in the transmembrane phospholipid movements as well as in the fusion and hemolysis of RBCs. The transfer from HVJ to RBC's occurred partially through an exchange mechanism not accompanying the envelope fusion. This was shown by a decrease in the exchange broadening of the electron spin resonance spectrum of released spin-labeled HVJ (HVJ) and also by an increase in the ratio of PC to viral proteins incorporated into RBC membranes. HVJ modified RBC membrane so as to be able to exchange its phospholipids with those of inactive membranes such as fibroblast HVJ, influenza virus, glutaraldehyde-treated RBC'S, and phosphatidylcholine vesicles. HVJ affected the fluidity of RBC membranes markedly, the environments around PC being much fluidized. The virus-induced fusion was discussed based on close apposition of the membranes by HANA proteins and on the destabilization and fluidization of RBC membranes by F glycoproteins.  相似文献   
95.
Mixed forests comprising multiple tree species with contrasting crown architectures, leaf phenologies, and photosynthetic activity, tend to have high ecosystem productivity. We propose that in such forests, differentiation among coexisting species in their spatial and temporal strategies for light interception, results in complementary use of light. Spatial differentiation among coexisting tree species occurs as a result of adaptation of crown architecture and shoot/leaf morphology to the spatially variable light conditions of the canopy, sub-canopy, and understory. Temporal differentiation occurs as a result of variation in leaf phenology and photosynthetic activity. The arrangement of leaves in both space and time is an important aspect of plant strategies for light interception and determines photosynthetic carbon gain of the plant canopy. For example, at the shoot level, morphological and phenological differentiation between long and short shoots reflects their respective shoot functions, indicating that spatial and temporal strategies for light interception are linked. Complementary use of light is a consequence of the spatiotemporal differentiation in light interception among coexisting species. Because coexisting species may show differentiation in strategies for resource acquisition (functional diversification) or convergence with respect to some limiting resource (functional convergence), the relative importance of various crown functions and their contribution to growth and survival of individuals need to be evaluated quantitatively and compared among coexisting species.  相似文献   
96.
Dexamethasone at a concentration as low as 10 nM significantly increased both the histamine content and histidine decarboxylase activity of cultured mastocytoma P-815 cells. Both effects were clearly seen using several glucocorticoids, which were as effective as dexamethasone. In contrast to that of histamine, the serotonin level of mastocytoma P-815 cells was decreased by treatment with dexamethasone. The dexamethasone-induced increases in histamine content and histidine decarboxylase activity were completely suppressed by the addition of cycloheximide and actinomycin D. Mastocytoma P-815 cells were found to possess binding sites for [3H]dexamethasone in the cytosol (Kd = 15.7 nM) and the nuclei (Kd = 1.26 nM). These results show that glucocorticoids significantly stimulate de novo synthesis of histidine decarboxylase.  相似文献   
97.
A series of benzamidines and benzamides was synthesized as selective inhibitors of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, and tested for inhibitory activity toward autophosphorylation by the enzyme assay. Selective inhibition of VEGFR-2 tyrosine kinase was observed in the salicylic amide 4e and the anthranilic amidine 5a, and their percent inhibitions of VEGFR-2 tyrosine kinase were 44-60% at a 10 microM concentration of compounds. The salicylic amide 4a showed inhibition of both VEGFR-1 and VEGFR-2 tyrosine kinases at a 10 microM concentration.  相似文献   
98.
Abstract: The localization of two forms of the γ subunit of G proteins, γ3 and γ12, was examined in the mammalian brain. Concentrations of these two γ subunits increased markedly, as did those of glial fibrillary acidic protein, during postnatal development in the rat cerebral cortex. In aged human brains, by contrast, the concentration of γ3 tended to decrease with age, whereas that of γ12 in the temporal cortex increased slightly. An immunohistochemical study of human brains revealed that γ3 was abundant in the neuropil, whereas γ12 was localized in glial cells. In the hippocampal formation of aged human brains, levels of γ12-positive cells, as well as levels of glial fibrillary acidic protein- and vimentin-positive astrocytes, increased, in particular in the CA1 subfield and the prosubiculum, in which there was a decrease in the number of pyramidal cells. The appearance of γ12-positive cells associated with the loss of pyramidal cells was also observed in the hippocampus of rats that had been treated with kainic acid. These results indicate that γ12 is strongly expressed in reactive astrocytes. In a study of cultured neural cells, we found that γ12 was predominant in glioma cells, such as C6 and GA-1 cells, in contrast with the specific localization of γ3 in PC12 pheochromocytoma cells, which are neuron-like cells. Taken together, the results indicate that γ3 and γ12 are selectively expressed in neuronal and glial cells, respectively, and that concentrations of γ3 and γ12 in the brain are related to the numbers and/or extent of maturation of these cells.  相似文献   
99.
The polyhydroxylated nortropane alkaloids called calyste-ginesoccur in many plants of the Convolvulaceae, Solanaceae, andMoraceae families. Certain of these alkaloids exhibit potentinhibitory activities against glycosidases and the recentlydemonstrated occurrence of calystegines in the leaves, skins,and sprouts of potatoes (Solatium tuberosum), and in the leavesof the eggplant (S.melongena), has raised concerns regardingthe safety of these vegetables in the human diet. We have surveyedthe occurrence of calystegines in edible fruits and vegetablesof the families Convolvulaceae, Solanaceae, and Moraceae byGC-MS. Calystegines A3, B1, B2, and C1 were detected in allthe edible fruits and vegetables tested; sweet and chili peppers,potatoes, eggplants, tomatoes, Physalis fruits, sweet potatoes,and mulberries. Calystegines B1 and C1 were potent competitiveinhibitors of the bovine, human, and rat β-glucosidaseactivities, with K1 values of 150, 10, and 1.9 µM, respectivelyfor B1 and 15,1.5, and 1 µM, respectively, for C1. CalystegineB2 was a strong competitive inhibitor of the -galactosidaseactivity in all the livers. Human β-xylosidase was inhibitedby all four nortropanes, with calystegine C1 having a K1 of0.13 µM. Calystegines A3 and B2 selectively inhibitedthe rat liver β-glucosidase activity. The potent inhibitionof mammalian β-glucosidase and -galactosidase activitiesin vitro raises the possibility of toxicity in humans consuminglarge amounts of plants that contain these compounds. edible plants calystegines glycosidase inhibitors bovine, human, and rat liver  相似文献   
100.
Follistatin is a specific activin-binding protein and is supposed to control activin functions. During Xenopus embryonic development, activin is thought to act as a natural mesoderm-inducing factor. We isolated here the Xenopus follistatin cDNA from Xenopus ovary cDNA library and studied the expression of Xenopus follistatin gene during the course of early embryonic development. The Xenopus follistatin has an 84% homology at the level of deduced amino acid sequence with human and porcine follistatin. Its 3.5 kb mRNA is first expressed at the gastrula stage, when the expression of activin mRNA becomes first detectable, and increased thereafter. Another species of 2 kb mRNA become detectable from early neurula and also increased dramatically in tadpole. These results suggest that the follistatin acts also as a regulator of activin in inductive interactions during amphibian embryonic development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号