首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   34篇
  2022年   2篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   16篇
  2016年   11篇
  2015年   16篇
  2014年   26篇
  2013年   45篇
  2012年   38篇
  2011年   53篇
  2010年   16篇
  2009年   28篇
  2008年   46篇
  2007年   50篇
  2006年   36篇
  2005年   45篇
  2004年   30篇
  2003年   36篇
  2002年   26篇
  2001年   7篇
  2000年   13篇
  1999年   16篇
  1998年   14篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1984年   3篇
  1982年   7篇
  1981年   5篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   6篇
  1973年   3篇
  1971年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有700条查询结果,搜索用时 31 毫秒
41.
We investigated the effect of central and peripheral glucagon-like peptide-1 (GLP-1) on crop emptying in growing chicks. Intracerebroventricular injection of two concentrations of GLP-1 (15 and 60 pmol) similarly suppressed crop emptying, compared with control chicks. The delay in crop emptying induced by GLP-1 (15 pmol) was partly attenuated by co-administration with exendin (5-39) (600 pmol), a GLP-1 receptor antagonist, although exendin (5-39) alone did not affect crop emptying. On the other hand, intraperitoneal administration of several doses of GLP-1 (120, 300 and 3000 pmol) did not alter crop emptying. The present study revealed that central, but not peripheral, GLP-1 inhibits crop emptying in chicks.  相似文献   
42.
The dorsal fur in yellow F1 mice (F1-Ay) between C3H/HeJ and C57BL/6J-Ay is darker than that in C57BL/6J-Ay. Moreover, yellow F2 mice (F2-Ay) exhibit a wide spectrum of coat color phenotypes in terms of lightness and darkness. Quantitative trait locus (QTL) analysis on F2-Ay identified three significant modifier loci that accounted for darkening of the coat color on chromosomes 1 (Dmyaq1 and Dmyaq2) and 15 (Dmyaq3), and the C3H/HeJ allele at these loci increased the darkness. Because agouti F2 mice (F2-A) also exhibited a spectrum of coat color phenotypes, the question of whether these QTLs had any effects on F2-A was examined. Dmyaq1 and Dmyaq2 were shown to increase the darkness in F2-A, whereas Dmyaq3 did not. The results showed that Dmyaq1-Dmyaq3 were parts of determinants responsible for the sable (darker modification of yellow) coat color phenotype, and that Dmyaq1 and Dmyaq2 were parts of determinants responsible for the umbrous (darker modification of agouti) coat color phenotype. It is, thus, demonstrated that both the sable and the umbrous phenotypes resulted from multigenic contributions, and that they shared genetic bases, as had been implied for several decades.  相似文献   
43.
White CL  Suto RK  Luger K 《The EMBO journal》2001,20(18):5207-5218
Chromatin is composed of nucleosomes, the universally repeating protein-DNA complex in eukaryotic cells. The crystal structure of the nucleosome core particle from Saccharomyces cerevisiae reveals that the structure and function of this fundamental complex is conserved between single-cell organisms and metazoans. Our results show that yeast nucleosomes are likely to be subtly destabilized as compared with nucleosomes from higher eukaryotes, consistent with the idea that much of the yeast genome remains constitutively open during much of its life cycle. Importantly, minor sequence variations lead to dramatic changes in the way in which nucleosomes pack against each other within the crystal lattice. This has important implications for our understanding of the formation of higher order chromatin structure and its modulation by post-translational modifications. Finally, the yeast nucleosome core particle provides a structural context by which to interpret genetic data obtained from yeast. Coordinates have been deposited with the Protein Data Bank under accession number 1ID3.  相似文献   
44.
Diospyros species distributed widely in Thailand were classified into four ecotypes, according to their habitat; constantly humid area, alternately dry and wet area, mountainous cool area and all area. Some of them inhabit near dwelling areas or in the paddy field in the village. The young fruit is covered with dense pubescence in most species. The size, shape, and color of mature fruit greatly vary greatly with the species. In most species, the mature fruit has a soft pulp and hard skin. The fruit of six species has been used for dying. Four species produce edible fruits, with color and flavor favorable for breeding of edibleDiospyros species. The fruit of some species contains some chemicals useful as fish poisoning or of medicines, although the active components have not yet been identified. The edible fruit contained many tannin cells, but the fruit used as fish poisoning and medicines had only a few.  相似文献   
45.
Pulmonary arterial hypertension (PAH) is a devastating disorder characterized by progressive elevation of the pulmonary pressures that, in the absence of therapy, results in chronic right-heart failure and premature death. The vascular pathology of PAH is characterized by progressive loss of small (diameter, less than 50 μm) peripheral pulmonary arteries along with abnormal medial thickening, neointimal formation, and intraluminal narrowing of the remaining pulmonary arteries. Vascular pathology correlates with disease severity, given that hemodynamic effects and disease outcomes are worse in patients with advanced compared with lower-grade lesions. Novel imaging tools are urgently needed that demonstrate the extent of vascular remodeling in PAH patients during diagnosis and treatment monitoring. Optical coherence tomography (OCT) is a catheter-based intravascular imaging technique used to obtain high-resolution 2D and 3D cross-sectional images of coronary arteries, thus revealing the extent of vascular wall pathology due to diseases such as atherosclerosis and in-stent restenosis; its utility as a diagnostic tool in the assessment of the pulmonary circulation is unknown. Here we show that OCT provides high-definition images that capture the morphology of pulmonary arterial walls in explanted human lungs and during pulmonary arterial catheterization of an adult pig. We conclude that OCT may facilitate the evaluation of patients with PAH by disclosing the degree of wall remodeling present in pulmonary vessels. Future studies are warranted to determine whether this information complements the hemodynamic and functional assessments routinely performed in PAH patients, facilitates treatment selection, and improves estimates of prognosis and outcome.Abbreviations: OCT, optical coherence tomography; PAC, pulmonary artery catheter; PAH, pulmonary arterial hypertensionPulmonary arterial hypertension (PAH) is a devastating disorder characterized by progressive elevation of pulmonary pressures that, when untreated, can lead to chronic right heart failure and death.14 The vascular pathology of PAH is characterized by neointimal formation, medial thickening, intravascular thrombi and, in severe cases, intravascular clusters of disorganized endothelial cells that give rise to tortuous endovascular channels.8 Most of the early vascular lesions are found in small (diameter, less than 50 μm) pulmonary arteries. However, as the disease advances, pulmonary arteries (diameter, 50 μm or larger) proximal to these lesions also display evidence of luminal narrowing and medial thickening.7,8,15 Most patients with PAH are younger than those with chronic systemic vascular disorders (that is, coronary artery disease, peripheral vascular disease, systemic hypertension), whose vascular pathology involves mostly large to medium-sized arteries. However, both patient populations demonstrate various pathologic features, including vascular smooth-cell accumulation, neointimal formation, inflammation, luminal narrowing, and alterations in the composition of the extracellular matrix.6,17The only definite way to diagnose PAH is through right heart catheterization to directly measure the pressure in the pulmonary circulation. Although pulmonary angiography during right heart catheterization cannot be used to diagnose PAH, it provides supportive evidence of PAH by demonstrating significant peripheral small vessel loss and luminal narrowing in the remaining central vessels. Angiography can help clinicians visualize pulmonary vessels in real time, but this diagnostic technique has important limitations. The use of ionized contrast can cause allergic reactions and may trigger acute renal failure due to contrast-induced nephropathy.26 In addition, pulmonary angiography provides information regarding gross vessel appearance and small vessel perfusion but not about the state of vascular wall remodeling or the extent of luminal narrowing associated with PAH at any stage.5,16 Therefore, imaging techniques are urgently needed that complement the hemodynamic information obtained via right heart catheterization with a safe and reproducible method to assess vascular wall pathology, thereby allowing clinicians to correlate the clinical evolution of PAH with the progression of vascular pathology.The last decade has seen tremendous progress in the development of intravascular imaging modalities that can identify patients at risk for developing complications related to systemic vascular disease and therefore prevent disease-related morbidity and mortality.4 One such modality is optical coherence tomography (OCT), an imaging technique that uses a thin (diameter, 1.0 mm) wire and near-infrared light to capture micrometer-resolution, 3D images from within optical scattering media (for example, biologic tissue).1 Superior to other intravascular imaging techniques, OCT is frequently used in patients with coronary artery disease, where it provides high-resolution images of the coronary arterial wall that correlate highly with pathology seen in explanted vessels.10,11,21 To date, several small studies have demonstrated the application of OCT to the evaluation of vascular remodeling in both idiopathic PAH and chronic thromboembolic PAH.7,21 However, despite OCT''s obvious advantages in the characterization of vascular remodeling in discrete segments of the pulmonary circulation, whether OCT provides anatomic information across the length of the pulmonary artery has not been tested.Here, we report the capacity of OCT to obtain both longitudinal and cross-sectional images that provide accurate anatomic information on healthy pulmonary arteries in explanted human lungs and during the pulmonary arterial catheterization of a live adult pig (Sus scrofa domesticus).  相似文献   
46.
47.
To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment (“Medaka Osteoclast”) was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation–reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.  相似文献   
48.
Mesenchymal stem cells (MSCs) have the ability to differentiate into a variety of lineages and to renew themselves without malignant changes, and thus hold potential for many clinical applications. However, it has not been well characterized how different the properties of MSCs are depending on the tissue source in which they resided. We previously reported a novel technique for the prospective MSC isolation from bone marrow, and revealed that a combination of cell surface markers (LNGFR and THY-1) allows the isolation of highly enriched MSC populations. In this study, we isolated LNGFR+ THY-1 + MSCs from synovium using flow cytometry. The results show that the synovium tissue contained a significantly larger percentage of LNGFR + THY-1 + MSCs. We examined the colony formation and differentiation abilities of bone marrow-derived MSCs (BM-MSCs) and synovium-derived MSCs (SYN-MSCs) isolated from the same patients. Both types of MSCs exhibited a marked propensity to differentiate into specific lineages. BM-MSCs were preferentially differentiated into bone, while in the SYN-MSC culture, enhanced adipogenic and chondrogenic differentiation was observed. These data suggest that the tissue from which MSCs are isolated should be tailored according to their intended clinical therapeutic application.  相似文献   
49.
This is the second report of a series paper, which reports molecular mechanisms underlying the occurrence of pruning spine phase after rapid spinogenesis phase in neonates and young infant in the primate brain. We performed microarray analysis between the peak of spine numbers [postnatal 3 months (M)] and spine pruning (postnatal 6 M) in prefrontal, inferior temporal, and primary visual cortices of the common marmoset (Callithrix jacchus). The pruning phase is not clearly defined in rodents but is in primates including the marmoset. The differentially expressed genes between 3 M and 6 M in all three cortical areas were selected by two-way analysis of variance. The list of selected genes was analyzed by canonical pathway analysis using “Ingenuity Pathway Analysis of complex omics data” (IPA; Ingenuity Systems, Qiagen, Hilden, Germany). In this report, we discuss these lists of genes for the glutamate receptor system, G-protein-coupled neuromodulator system, protector of normal tissue and mitochondria, and reelin. (1) Glutamate is a common neurotransmitter. Its receptors AMPA1, GRIK1, and their scaffold protein DLG4 decreased as spine numbers decreased. Instead, GRIN3 (NMDA receptor) increased, suggesting that strong NMDA excitatory currents may be required for a single neuron to receive sufficient net synaptic activity in order to compensate for the decrease in synapse. (2) Most of the G protein-coupled receptor genes (e.g., ADRA1D, HTR2A, HTR4, and DRD1) in the selected list were upregulated at 6 M. The downstream gene ROCK2 in these receptor systems plays a role of decreasing synapses, and ROCK2 decreased at 6 M. (3) Synaptic phagosytosis by microglia with complement and other cytokines could cause damage to normal tissue and mitochondria. SOD1, XIAP, CD46, and CD55, which play protective roles in normal tissue and mitochondria, showed higher expression at 6 M than at 3 M, suggesting that normal brain tissue is more protected at 6 M. (4) Reelin has an important role in cortical layer formation. In addition, RELN and three different pathways of reelin were expressed at 6 M, suggesting that new synapse formation decreased at that age. Moreover, if new synapses were formed, their positions were free and probably dependent on activity.  相似文献   
50.
The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号