首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   27篇
  560篇
  2022年   2篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   6篇
  2017年   14篇
  2016年   10篇
  2015年   15篇
  2014年   21篇
  2013年   40篇
  2012年   32篇
  2011年   43篇
  2010年   15篇
  2009年   22篇
  2008年   41篇
  2007年   41篇
  2006年   31篇
  2005年   37篇
  2004年   29篇
  2003年   30篇
  2002年   22篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   3篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有560条查询结果,搜索用时 15 毫秒
101.
Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear. By using a transgenic approach that modified the expression of delta‐like 1 (DLL1) or Jagged1 (JAG1) in an osteoblast‐specific manner, we investigated the ligand‐specific effects of Notch signaling in bone homeostasis. This study demonstrated for the first time that the proper regulation of DLL1 expression, but not JAG1 expression, in osteoblasts is essential for the maintenance of bone remodeling. DLL1‐induced Notch signaling was responsible for the expansion of the bone‐forming cell pool by promoting the proliferation of committed but immature osteoblasts. However, DLL1‐Notch signaling inhibited further differentiation of the expanded osteoblasts to become fully matured functional osteoblasts, thereby substantially decreasing bone formation. Osteoblast‐specific expression of DLL1 did not alter the intrinsic differentiation ability of cells of the osteoclast lineage. However, maturational arrest of osteoblasts caused by the DLL1 transgene impaired the maturation and function of osteoclasts due to a failed osteoblast‐osteoclast coupling, resulting in severe suppression of bone metabolic turnover. Taken together, DLL1‐mediated Notch signaling is critical for proper bone remodeling as it regulates the differentiation and function of both osteoblasts and osteoclasts. Our study elucidates the importance of ligand‐specific activation of Notch signaling in the maintenance of bone homeostasis. J. Cell. Physiol. 232: 2569–2580, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.  相似文献   
102.
The oral microbiota influences health and disease states. Some gram‐negative anaerobic bacteria play important roles in tissue destruction associated with periodontal disease. Lactoferrin (LF) and lactoperoxidase (LPO) are antimicrobial proteins found in saliva; however, their influence on the whole oral microbiota currently remains unknown. In this randomized, double‐blinded, placebo‐controlled study, the effects of long‐term ingestion of LF and LPO‐containing tablets on the microbiota of supragingival plaque and tongue coating were assessed. Forty‐six older individuals ingested placebo or test tablets after every meal for 8 weeks. The relative abundance of bacterial species was assessed by 16S rRNA gene high‐throughput sequencing. Most of the bacterial species in supragingival plaque and tongue coating that exhibited significant decreases in the test group were gram‐negative bacteria, including periodontal pathogens. Decreases in the total relative abundance of gram‐negative organisms in supragingival plaque and tongue coating correlated with improvements in assessed variables related to oral health, such as oral malodor and plaque accumulation. Furthermore, there was significantly less microbiota diversity in supragingival plaque at 8 weeks in the test group than in the placebo group and low microbiota diversity correlated with improvements in assessed variables related to oral health. These results suggest that LF and LPO‐containing tablets promote a shift from a highly diverse and gram‐negative‐dominated to a gram‐positive‐dominated community in the microbiota of supragingival plaque and tongue coating. This microbial shift may contribute to improvements in oral health, including oral malodor and state of the gingiva.
  相似文献   
103.
104.
The pH dependence and kinetics parameters of renin-angiotensinogen reactions were determined using wild-type and S84G mutant human renins and wild-type and H13Y mutant sheep angiotensinogens. It is explained in this report that (i) renin catalyzes acidic and basic reactions of which the optimum pHs are 5.5 and 7.5-8.2 respectively, both of which produce angiotensin I; (ii) Ser84 specific to human renin accelerates the acidic reaction by 75-110% through elevation of V(max), and shifts the optimum pH of the basic reaction from 7.5 to 8.0-8.2; and (iii) His13 specific to sheep angiotensinogen accelerates the acidic and basic reactions by 25-42% through reduction of K(m). It is concluded from these results that the coexistence of Ser84 in renin and His13 in angiotensinogen brings a pH profile of two separate peaks at pHs 5.5 and 8.2 to the reaction of human renin and sheep angiotensinogen.  相似文献   
105.
There are two major modes for plant recognition of biotrophic microbial pathogens. In one mode, plant pattern recognition receptors (PRRs) recognize microbe associated molecular patterns (MAMPs, also called PAMPs), which are molecules such as flg22, a fragment of bacterial flagellin. In the other mode, the products of plant resistance (R) genes recognize pathogen effectors or host proteins modified by effectors. Salicylic acid (SA) -mediated defense responses are an important part of R gene-mediated resistance. It was not clear how these two signaling mechanisms interact with each other. Recently, we reported that treatment with flg22 triggered SA accumulation in Arabidopsis leaves. Disruptions of SA signaling components strongly affected MAMP-triggered gene expression responses. Flg22-triggered resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was partly dependent on SA signaling. Our results demonstrated the importance of SA signaling in flg22-triggered resistance and, at the same time, the importance of some other signaling mechanism(s) in this resistance. Here we discuss potential signaling components of flg22-triggered SA accumulation and other signaling mechanisms potentially contributing to flg22-triggered resistance to Pst DC3000.Key words: arabidopsis, expression profiling, MAMP, PAD4, PAMP, salicylic acid (SA), SID2  相似文献   
106.
Human APOBEC3G exhibits anti‐human immunodeficiency virus‐1 (HIV‐1) activity by deaminating cytidines of the minus strand of HIV‐1. Here, we report a solution structure of the C‐terminal deaminase domain of wild‐type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real‐time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3′ → 5′ order. Virus infectivity factor (Vif) of HIV‐1 counteracts the anti‐HIV‐1 activity of APOBEC3G. The structure of the N‐terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species‐specific sensitivity of APOBEC3G to Vif action.  相似文献   
107.
Three forms of recombinant protein complexes comprising the human prorenin (hPro) and (pro)renin receptor (hPRR) (hPRR/prorenin) were successfully expressed in the silkworm larvae using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmids. They were localized in the fat body cells and formed a prorenin-bound hPRR complex. The expressed levels of hPro and hPRR were similar judging from Western blotting. The hPRR/prorenin complex containing 40 μg of hPRR (yield, 43%) and 30 μg of hPro (yield, 34%) was purified from 15 silkworm larvae by a series of purification using anti-FLAG and Strep-Tactin affinity chromatography. The renin activity of the purified hPRR/prorenin complex was 3.8-fold that of the mixture of hPRR and hPro expressed individually in vitro judging from the renin assay. These results show that the unstable transmembrane protein, hPRR, was coexpressed stably with ligand, hPro, and formed a stable protein, hPRR/prorenin complex that showed a high catalytic active form.  相似文献   
108.
The structure and biosensor characteristics of complex between glucose oxidase (GOD) and plasma-polymerized nanothin film (PPF), in which the thickness is several nanometers, were investigated by atomic force microscopy (AFM) and electrochemical measurement. The GOD molecules were densely adsorbed onto the PPF surface treated by nitrogen plasma and the individual GOD molecules were observed. Subsequently, the GOD densely packed array on the PPF surface was subsequently treated by plasma polymerization (overcoating). AFM image showed that the thicker film gave the smoother surface, indicating that the GOD adsorbed on the surface was embedded more deeply in PPF. The amperometric biosensor characteristics of the GOD-PPF complex on a platinum electrode showed the current increment due to the enzymatic reaction with glucose addition, indicating that enzyme activity was retained although the enzyme has been exposed to the plasma gas related to diffusion of the substrate. This means that under mild exposure to organic plasma, the enzyme does not become seriously dysfunctional. Amperometric biosensor characteristics were strongly affected by monomer and thickness of PPF overcoating related with the diffusion of the substrate (glucose). Considering that the film deposition was performed using microfabrication-compatible organic plasma, our new method for protein architecture has a great potential of enabling high throughput production of bioelectronic devices.  相似文献   
109.
The structure of the C-terminal antifreeze-like (AFL) domain of human sialic acid synthase was determined by NMR spectroscopy. The structure comprises one alpha- and two single-turn 3(10)-helices and two beta-strands, and is similar to those of the type III antifreeze proteins. Evolutionary trace analyses of the type III antifreeze protein family suggested that the class-specific residues in the human and bacterial AFL domains are important for their substrate binding, while the class-specific residues of the fish antifreeze proteins are gathered on the ice-binding surface.  相似文献   
110.
Myelin-associated glycoprotein (MAG) and Nogo are potent inhibitors of neurite outgrowth from a variety of neurons, and they have been identified as possible components of the central nervous system myelin that prevents axonal regeneration in the adult vertebrate central nervous system. The activation of RhoA and Rho-kinase is reported to be an essential part of the signaling mechanism of these proteins. Here, we report that the collapsing response mediator protein-2 (CRMP-2) is phosphorylated by a Rho-kinase-dependent mechanism downstream of MAG or Nogo-66. The overexpression of the nonphosphorylated form of CRMP-2 at threonine 555, which is the phosphorylation site for Rho-kinase, counteracts the inhibitory effect of MAG on the postnatal cerebellar neurons. Additionally, the expression of the dominant negative form of CRMP-2 or knockdown of the gene using small interference RNA (siRNA) mimics the effect of MAG in vitro. Consistent with the function of CRMP-2, which promotes microtubule assembly, microtubule levels are down-regulated in the cerebellar neurons that are stimulated with MAG in vitro. Reduction in the density of microtubules is also observed in the injured axons following the spinal cord injury, and this effect depends on the Rho-kinase activity. Our data suggest the important roles of CRMP-2 and microtubules in the inhibition of the axon regeneration by the myelin-derived inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号