首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1812篇
  免费   247篇
  2021年   16篇
  2019年   25篇
  2018年   40篇
  2017年   24篇
  2016年   35篇
  2015年   51篇
  2014年   53篇
  2013年   81篇
  2012年   83篇
  2011年   76篇
  2010年   69篇
  2009年   51篇
  2008年   66篇
  2007年   67篇
  2006年   63篇
  2005年   65篇
  2004年   73篇
  2003年   67篇
  2002年   52篇
  2001年   65篇
  2000年   49篇
  1999年   48篇
  1998年   28篇
  1997年   32篇
  1996年   23篇
  1995年   16篇
  1994年   21篇
  1993年   21篇
  1992年   46篇
  1991年   33篇
  1990年   30篇
  1989年   37篇
  1988年   29篇
  1987年   31篇
  1986年   31篇
  1985年   36篇
  1984年   20篇
  1983年   20篇
  1982年   19篇
  1981年   17篇
  1980年   19篇
  1979年   29篇
  1978年   21篇
  1977年   21篇
  1976年   18篇
  1974年   15篇
  1973年   19篇
  1971年   14篇
  1968年   16篇
  1967年   14篇
排序方式: 共有2059条查询结果,搜索用时 46 毫秒
51.
Summary A human foreskin organ culture system has been developed to study the response of human skin to hormonal stimulation. Foreskins are maintained in culture on floating plastic supports which allows the epidermal surface to be exposed to air while the dermis is bathed in nutrient medium. Both black and white human foreskins can be maintained in organ culture for at least 1 wk with no change in the tissue structure or cell viability as determined by histochemical staining and by dopa reaction staining. Tyrosinase activity in both black and white human foreskin cultures decays markedly during the first 2 d of culture to a new steady state level which remains stable throughout the culture period. Both black and white foreskin cultures consistently demonstrate 2- to 10-fold increases in tyrosinase activity when treated with theophylline (1 mM). Approximately 90% of all skin cultures examined showed an increase in enzyme activity when treated with this phosphodiesterase inhibitor. Dibutyryl cAMP (0.1 mM) and [Nle4, D-phe7]-alpha MSH (10−8 M), were also found to markedly stimulate tyrosinase activity in some skin cultures, whereas alpha-MSH and prostaglandin E1 produced only an inconsistent and small increase in the activity of the enzyme. Histamine (1 μM), vitamin D3 (1 μM), and retinoic acid (1μM) failed to stimulate tyrosinase activity in either white or black foreskin cultures. This hormone-responsive organ culture system can be utilized to characterize the molecular processes responsible for the regulation of tyrosinase and pigmentation in human skin. This work was supported by a research contract from the Oklahoma Center for the Advancement of Science and Technology (OCAST) and by a research grant from the Presbyterian Health Foundation.  相似文献   
52.
Animal studies suggest that the neuropeptides, substance P and vasoactive intestinal peptide (VIP), may influence carotid body chemoreceptor activity and that substance P may take part in the carotid body response to hypoxia. The effects of these peptides on resting ventilation and on ventilatory responses to hypoxia and to hypercapnia have been investigated in six normal humans. Infusions of substance P (1 pmol.kg-1.min-1) and of VIP (6 pmol.kg-1.min-1) were compared with placebo and with nitroprusside (5 micrograms.kg-1.min-1) as a control for the hypotensive action of the peptides. Both peptides caused significantly less hypotension than nitroprusside. Substance P and nitroprusside caused significantly greater increases in ventilation and in the hypoxic ventilatory response than VIP. No changes were seen in hypercapnic sensitivity. The stimulation of ventilation and the differential effects on ventilatory chemosensitivity that accompanied hypotension are consistent either with stimulation of carotid body chemoreceptor activity or with an interaction with peripheral chemoreceptor input to the respiratory center, as is seen in animals. The similar cardiovascular but different ventilatory effects of the peptides suggest that substance P may also stimulate the carotid body in a manner independent of the effect of hypotension. This is consistent with a role of substance P in the hypoxic ventilatory response in humans.  相似文献   
53.
54.
Kex2 protease (Kex2p) and Ste13 dipeptidyl aminopeptidase (Ste13p) are required in Saccharomyces cerevisiae for maturation of the alpha-mating factor in a late Golgi compartment, most likely the yeast trans-Golgi network (TGN). Previous studies identified a TGN localization signal (TLS) in the C-terminal cytosolic tail of Kex2p consisting of Tyr-713 and contextual sequences. Further analysis of the Kex2p TLS revealed similarity to the Ste13p TLS. Mutation of the Kex2p TLS results in transport of Kex2p to the vacuole by default. When expression of a GAL1 promoter-driven KEX2 gene is shut off in MAT(alpha) cells, the TGN becomes depleted of Kex2p, resulting in a gradual decline in mating competence which is greatly accelerated by TLS mutations. To identify the genes involved in localization of Kex2p, we isolated second-site suppressors of the rapid loss of mating competence observed upon shutting off expression of a TLS mutant form of Kex2p (Y713A). Seven of 58 suppressors were allele specific, suppressing point mutations at Tyr-713 but not deletions of the TLS or entire C-terminal cytosolic tail. By linkage analysis, the allele-specific suppressors defined three genetic loci, SOI1, S0I2, and S0I3. Pulse-chase analysis demonstrated that these suppressors increased net TGN retention of both Y713A Kex2p and a Ste13p-Pho8p fusion protein containing a point mutation in the Ste13p TLS. SOI1 suppressor alleles reduced the efficiency of localization of wild-type Kex2p to the TGN, implying an impaired ability to discriminate between the normal TLS and a mutant TLS. soi1 mutants also exhibited a recessive defect in vacuolar protein sorting. Suppressor alleles of S0I2 were dominant. These results suggest that the SOI1 and S0I2 genes encode regulators or components of the TLS recognition machinery.  相似文献   
55.
The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner.  相似文献   
56.
57.
The structural genes for the flavoprotein subunit and cytochrome c subunit of p-cresol (4-methylphenol) methylhydroxylase (PCMH) from Pseudomonas putida NCIMB 9869 (National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland) and P. putida NCIMB 9866 were cloned and sequenced. The genes from P.putida NCIMB 9869 were for the plasmid-encoded A form of PCMH, and the genes from P.putida NCIMB 9866 were also plasmid encoded. The nucleotide sequences of the two flavoprotein genes from P.putida NCIMB 9869 and P.putida NCIMB 9866 (pchF69A and pchF66, respectively) were the same except for 5 bases out of 1,584, and the translated amino acid sequences were identical. The nucleotide sequences of the genes for the cytochrome subunits of PCMH from the two bacteria (pchC69A and pchC66) varied by a single nucleotide in their 303-base sequences, and the translated amino acid sequences differed by a single residue at position 41 (Asp in PchC69A and Ala in PchC66). Both cytochromes had 21-residue signal sequences, as expected for periplasmic proteins, and these sequences were identical. On the other hand, no signal sequences were found for the flavoproteins.pchF69A and pchC69A were expressed, separately or together, in Escherichia coli JM109 and P.putida RA4007, with active PCMH produced in both bacteria. The E. coli-expressed flavocytochrome was purified. Our studies indicated that the E.coli-expressed subunits were identical to the subunits expressed in P.putida NCIMB 9869: molecular weights, isoelectric points, UV-visible spectra, and steady-state kinetic parameters were the same for the two sets of proteins. The subunits readily associated upon mixing two crude extracts of E.coli, one extract containing PchC69A and the other containing PchF69A. The courses of association of PchC69A and PchF69A were essentially identical for pure E. coli-expressed subunits and pure P. putida 9869-expressed subunits. E. coli-expressed PchC69A and PchF69A contained covalently bound heme and covalently bound flavin adenine dinucleotide, respectively, as the proteins expressed in nature.  相似文献   
58.
The effects of acclimatization of microbial populations, compound concentration, and media pH on the biodegradation of low concentration dichloromethane emissions in biofiltration systems was evaluated. Greater than 98% removal efficiency was achieved for dichloromethane at superficial velocities from 1 to 1.5 m(3)/m(3). min (reactor residence times of 1 and 0.7 min, respectively) and inlet concentrations of 3 and 50 ppm Although acclimatization of microbial populations to toluene occurred within 2 weeks of operation start-up, initial dichloromethane acclimatization took place over a period of 10 weeks. This period was shortened to 10 days when a laboratory grown consortium of dichloromethane degrading organism, isolated from a previously acclimatized column, was introduced into fresh biofilter media. The mixed culture consisted to 12 members, which together were able to degrade dichloromethane at concentrations up to 500 mg/L. Only one member of the consortium was able to degrade dichloromethane were sustained for more than 4 months in a biofilter column receiving an inlet gas stream with 3 ppm(v) of dichloromethane acidification of the column and resulting decline in performance occurred when a 50-ppm(v) inlet concentration was used. A biofilm model incorporating first order biodegradation kinetics provided a good fit to observed concentration profiles, and may prove to be a useful tool for designing biofiltration systems for low concentration VOC emissions. (c) 1994 John Wiley & Sons, Inc.  相似文献   
59.
Recent evidence has shown that members of the Jak kinase family are activated after IL-6 binds to its receptor complex, leading to a tyrosine phosphorylation of gp130, the IL-6 signal-transducing subunit. The different members of the IL-6 cytokine subfamily induce distinct patterns of Jak-Tyk phosphorylation in different cell types. Using monospecific antibodies to gp130, Jak2 kinase, and phosphotyrosine, we investigated the kinetics of IL-6 stimulation of members of this pathway in primary hepatocytes. Our findings show that Jak 2 is maximally activated within 2 min of exposure to IL-6, followed by gp130 phosphorylation that reaches its peak in another 2 min then declines to basal level by 60 min. In vitro phosphorylation experiments show that activated Jak 2 is able to phosphorylate both native gp130 and a fusion peptide containing its cytoplasmic domain, demonstrating gp130 is a direct substrate of Jak 2 kinase. Experiments designed to explore the cell surface expression of gp130 show that > or = 2 h are required to get a second round of phosphorylation after the addition of more cytokines. This finding suggests that activated gp130 is internalized from the cell surface after IL-6 stimulation. Additional experiments using protein synthesis inhibitors reveal that new protein synthesis is required to get a second cycle of gp130 phosphorylation indicating gp130 must be synthesized de novo and inserted into the membrane. These findings provide strong evidence that down regulation of the IL-6 signal in hepatocytes involves the internalization and cytosol degradation of gp130.  相似文献   
60.
The physiological system responsible for the temporal coordination of an organism is the circadian timing system (CTS). This system provides two forms of temporal coordination. First, the CTS provides for synchronization of the organism with the 24 hour period of the external environment. This synchronization of the organism with the environment is termed entrainment. Second, this system also provides for internal coordination of the various physiological, behavioral, and biochemical events within the organism. When either of these two temporal relationships are disturbed, various dysfunctions can be manifest within the organism. Homeostatic capacity of other physiological systems may be reduced. Performance is decreased and sleep disorders, mental health impairment (e.g., depression), jet lag syndrome, and shift work maladaptation frequently occur. Over the last several years, several studies have evaluated the potential influence of gravity on this physiological control system by examining changes in rhythmic characteristics of organisms exposed to altered gravitational environments. The altered gravitational environments have included the microgravity of spaceflight as well as hyperdynamic fields produced via centrifugation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号