首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1710篇
  免费   244篇
  1954篇
  2021年   16篇
  2019年   27篇
  2018年   39篇
  2017年   24篇
  2016年   36篇
  2015年   52篇
  2014年   51篇
  2013年   79篇
  2012年   75篇
  2011年   71篇
  2010年   55篇
  2009年   46篇
  2008年   62篇
  2007年   65篇
  2006年   64篇
  2005年   66篇
  2004年   73篇
  2003年   65篇
  2002年   52篇
  2001年   65篇
  2000年   49篇
  1999年   48篇
  1998年   27篇
  1997年   30篇
  1996年   24篇
  1995年   14篇
  1994年   20篇
  1993年   20篇
  1992年   45篇
  1991年   33篇
  1990年   29篇
  1989年   36篇
  1988年   28篇
  1987年   32篇
  1986年   29篇
  1985年   35篇
  1984年   19篇
  1983年   19篇
  1982年   17篇
  1981年   16篇
  1980年   18篇
  1979年   28篇
  1978年   20篇
  1977年   21篇
  1976年   18篇
  1975年   13篇
  1974年   14篇
  1973年   13篇
  1968年   15篇
  1967年   14篇
排序方式: 共有1954条查询结果,搜索用时 15 毫秒
81.
Few techniques are suited to probe the structure and dynamics of molecular complexes at the mesoscale level (100–1000 nm). We have developed a single-molecule technique that uses tracking fluorescence correlation spectroscopy (tFCS) to probe the conformation and dynamics of mesoscale molecular assemblies. tFCS measures the distance fluctuations between two fluorescently labeled sites within an untethered, freely diffusing biomolecule. To achieve subdiffraction spatial resolution, we developed a feedback scheme that allows us to maintain the molecule at an optimal position within the laser intensity gradient for fluorescence correlation spectroscopy. We characterized tFCS spatial sensitivity by measuring the Brownian end-to-end dynamics of DNA molecules as short as 1000 bp. We demonstrate that tFCS detects changes in the compaction of reconstituted nucleosome arrays and can assay transient protein-mediated interactions between distant sites in an individual DNA molecule. Our measurements highlight the applicability of tFCS to a wide variety of biochemical processes involving mesoscale conformational dynamics.  相似文献   
82.
Neurons rely on glutathione (GSH) and its degradation product cysteinylglycine released by astrocytes to maintain their antioxidant defences. This is particularly important under conditions of inflammation and oxidative stress, as observed in many neurodegenerative diseases including Alzheimer’s disease (AD). The effects of inflammatory activation on intracellular GSH content and the extracellular thiol profile (including cysteinylglycine and homocysteine) of astrocytes were investigated. U373 astroglial cells exposed to IL-1β and TNF-α for up to 96 h showed a dose-dependent increase in IL-6 release, indicative of increasing pro-inflammatory cellular activation. With increasing concentrations of IL-1β and TNF-α (0.01–1 ng/ml), an increase in both intracellular and extracellular GSH levels was observed, followed by a return to control levels in response to higher concentrations of IL-1β and TNF-α. Extracellular levels of cysteinylglycine decreased in response to all concentrations of IL-1β and TNF-α. In contrast, levels of the neurotoxic thiol homocysteine increased in a dose-dependent manner to IL-1β and TNF-α-induced activation. Our results suggest that chronically activated astrocytes in the brain might fail to adequately maintain GSH substrate delivery to neurons, thus promoting neuronal vulnerability. They might also explain the elevated levels of homocysteine found in the brains and serum of patients with AD.  相似文献   
83.
The ITS sequences of Acropora spp. are the shortest so far identified in any metazoan and are among the shortest seen in eukaryotes; ITS1 was 70-80 bases, and ITS2 was 100-112 bases. The ITS sequences were also highly variable, but base composition and secondary structure prediction indicate that divergent sequence variants are unlikely to be pseudogenes. The pattern of variation was unusual in several other respects: (1) two distinct ITS2 types were detected in both A. hyacinthus and A. cytherea, species known to hybridize in vitro with high success rates, and a putative intermediate ITS2 form was also detected in A. cytherea; (2) A. valida was found to contain highly (29%) diverged ITS1 variants; and (3) A. longicyathus contained two distinct 5.8S rDNA types. These data are consistent with a reticulate evolutionary history for the genus Acropora.   相似文献   
84.

Introduction

The small leucine-rich proteoglycans (SLRPs) modulate tissue organization, cellular proliferation, matrix adhesion, growth factor and cytokine responses, and sterically protect the surface of collagen type I and II fibrils from proteolysis. Catabolism of SLRPs has important consequences for the integrity of articular cartilage and meniscus by interfering with their tissue homeostatic functions.

Methods

SLRPs were dissociatively extracted from articular cartilage from total knee and hip replacements, menisci from total knee replacements, macroscopically normal and fibrillated knee articular cartilage from mature age-matched donors, and normal young articular cartilage. The tissue extracts were digested with chondroitinase ABC and keratanase-I before identification of SLRP core protein species by Western blotting using antibodies to the carboxyl-termini of the SLRPs.

Results

Multiple core-protein species were detected for all of the SLRPs (except fibromodulin) in the degenerate osteoarthritic articular cartilage and menisci. Fibromodulin had markedly less fragments detected with the carboxyl-terminal antibody compared with other SLRPs. There were fewer SLRP catabolites in osteoarthritic hip than in knee articular cartilage. Fragmentation of all SLRPs in normal age-matched, nonfibrillated knee articular cartilage was less than in fibrillated articular cartilage from the same knee joint or total knee replacement articular cartilage specimens of similar age. There was little fragmentation of SLRPs in normal control knee articular cartilage. Only decorin exhibited a consistent increase in fragmentation in menisci in association with osteoarthritis. There were no fragments of decorin, biglycan, lumican, or keratocan that were unique to any tissue. A single fibromodulin fragment was detected in osteoarthritic articular cartilage but not meniscus. All SLRPs showed a modest age-related increase in fragmentation in knee articular and meniscal cartilage but not in other tissues.

Conclusion

Enhanced fragmentation of SLRPs is evident in degenerate articular cartilage and meniscus. Specific decorin and fibromodulin core protein fragments in degenerate meniscus and/or human articular cartilage may be of value as biomarkers of disease. Once the enzymes responsible for their generation have been identified, further research may identify them as therapeutic targets.  相似文献   
85.
86.
87.
88.
Putrescine and other amines are known to rapidly reduce or prevent increases in ornithine decarboxylase activity in a number of systems. We have confirmed reports of a nondialyzable inhibitor of the enzyme in serum-starved H-35 hepatoma cells exposed to serum and putrescine. In contrast, we detected little if any nondialyzable inhibitor in serum-limited Swiss 3T3 cells treated similarly. Also, evidence of a dissociable enzyme-inhibitor complex was found in H-35 cells but not in 3T3 cells. These results suggest that assimilated putrescine can reduce ornithine decarboxylase activity by mechanisms not involving a macromolecular inhibitor.  相似文献   
89.
90.
To evaluate the effects of freezing and thawing on Ca2+ transport and permeability, inside-out red cell membrane vesicles (IORCMV) are examined. Exposure to the cryoprotectant Me2SO as well as different cooling regimes on unprotected and cryoprotected vesicles do not affect the membrane Ca2+ transport. However, freezing and thawing increase the membrane permeability to sucrose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号