首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   11篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   7篇
  2013年   3篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   8篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1979年   2篇
  1977年   1篇
  1975年   3篇
  1971年   1篇
  1954年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
31.
Despite impressive variation in leg number, length, position and type of skeleton, similarities of legged, pedestrian locomotion exist in energetics, gait, stride frequency and ground-reaction force. Analysis of data available in the literature showed that a bouncing, spring-mass, monopode model can approximate the energetics and dynamics of trotting, running, and hopping in animals as diverse as cockroaches, quail and kangaroos. From an animal's mechanical-energy fluctuation and ground-reaction force, we calculated the compression of a virtual monopode's leg and its stiffness. Comparison of dimensionless parameters revealed that locomotor dynamics depend on gait and leg number and not on body mass. Relative stiffness per leg was similar for all animals and appears to be a very conservative quantity in the design of legged locomotor systems. Differences in the general dynamics of gait are based largely on the number of legs acting simultaneously to determine the total stiffness of the system. Four- and six-legged trotters had a greater whole body stiffness than two-legged runners operating their systems at about the same relative speed. The greater whole body stiffness in trotters resulted in a smaller compression of the virtual leg and a higher natural frequency and stride frequency.  相似文献   
32.
Summary The capacity for sustained, terrestrial locomotion in the cockroach. Blaberus discoidalis, was determined in relation to running speed, metabolic cost, aerobic capacity, and ambient temperature (T a=15, 23, and 34°C; acclimation temperature=24°C). Steady-state thoracic temperature (T tss) increased linearly with speed at each T a.The difference between T tss and T awas similar at each experimental temperature with a maximum increase of 7°C. Steady-state oxygen consumption (VO2ss) increased linearly with speed at each T aand had a low thermal dependence (Q10=1.0-1.4). The minimum cost of locomotion (the slope of the VO2ss versus speed function) was independent of T a.Cockroaches attained a maximal oxygen consumption (VO2max). increased with T afrom 2.1 ml O2·g-1·h-1 at 15°C to 4.9 ml O2·g-1·h-1 at 23°C, but showed no further increase at 34°C, VO2max increased 23-fold over resting VO2 at 23°C, 10-fold at 34°C, and 15-fold at 15°C. Endurance correlated with the speed at which VO2max was attained (MAS, maximal aerobic speed). Temperature affected the kinematics of locomotion. compared to cockroaches running at the same speed, but higher temperatures (23–34°C), low temperature (15°C) increased protraction time, reduced stride frequency, and reduced stability by increasing body pitching. The thermal independence of the minimum cost of locomotion (Cmin), the low thermal dependence of VO2ss (i.e., y-intercept of the VO2ss versus speed function), and a typical Q10 of 2.0 for VO2max combined to increase MAS and endurance in B. discoidalis when T awas increased from 15 to 23°C. Exerciserelated endothermy enabled running cockroaches to attain a greater VO2max, metabolic scope, and endurance capacity at 23°C than would be possible if T tss remained equal to T a. The MAS of B. discoidalis was similar to that of other arthropods that use trachea, but was 2-fold greater than ectotherms, such as salamanders, frogs, and crabs of a comparable body mass.Abbreviations T a ambient temperature - T t thoracic temperature - T tss steady state thoracic temperature during exercise - T trest thoracic temperature during rest - VO2 oxygen consumption - VO2rest oxygen consumption during rest - VO2ss steady-state oxygen consumption during exercise - VO2max maximal oxygen consumption; MAS maximum aerobic speed - C min minimum cost of locomotion - t end endurance time  相似文献   
33.
We develop a simple hexapedal model for the dynamics of insect locomotion in the horizontal plane. Each leg is a linear spring endowed with two inputs, controlling force-free length and hip position, in a stereotypical feedforward pattern. These represent, in a simplified manner, the effects of neurally activated muscles in the animal and are determined from measured foot force and kinematic body data for cockroaches. We solve the three-degree-of-freedom Newtonian equations for coupled translation-yawing motions in response to the inputs and determine branches of periodic gaits over the animals typical speed range. We demonstrate a close quantitative match to experiments and find both stable and unstable motions, depending upon input protocols.Our hexapedal model highlights the importance of stability in evaluating effective locomotor performance and in particular suggests that sprawled-posture runners with large lateral and opposing leg forces can be stable in the horizontal plane over a range of speeds, with minimalsensory feedback from the environment. Fore–aft force patterns characteristic of upright-posture runners can cause instability in the model. We find that stability can constrain fundamental gait parameters: our model is stable only when stride length and frequency match the patterns measured in the animal. Stability is not compromised by large joint moments during running because ground reaction forces tend to align along the leg and be directed toward the center of mass. Legs radiating in all directions and capable of generating large moments may allow very rapid turning and extraordinary maneuvers. Our results further weaken the hypothesis that polypedal, sprawled-posture locomotion with large lateral and opposing leg forces is less effective than upright posture running with fewer legs.  相似文献   
34.
35.
SJ Swanson  PC Bethke    RL Jones 《The Plant cell》1998,10(5):685-698
Light microscopy was used to study the structure and function of vacuoles in living protoplasts of barley (Hordeum vulgare cv Himalaya) aleurone. Light microscopy showed that aleurone protoplasts contain two distinct types of vacuole: the protein storage vacuole and a lysosome-like organelle, which we have called the secondary vacuole. Fluorescence microscopy using pH-sensitive fluorescent probes and a fluorogenic substrate for cysteine proteases showed that both protein storage vacuoles and secondary vacuoles are acidic, lytic organelles. Ratio imaging showed that the pH of secondary vacuoles was lower in aleurone protoplasts incubated in gibberellic acid than in those incubated in abscisic acid. Uptake of fluorescent probes into intact, isolated protein storage vacuoles and secondary vacuoles required ATP and occurred via at least two types of vanadate-sensitive, ATP-dependent tonoplast transporters. One transporter catalyzed the accumulation of glutathione-conjugated probes, and another transported probes not conjugated to glutathione.  相似文献   
36.

Background

Genome-wide association studies have been successful in identifying common genetic variants for human diseases. However, much of the heritable variation associated with diseases such as Parkinson’s disease remains unknown suggesting that many more risk loci are yet to be identified. Rare variants have become important in disease association studies for explaining missing heritability. Methods for detecting this type of association require prior knowledge on candidate genes and combining variants within the region. These methods may suffer from power loss in situations with many neutral variants or causal variants with opposite effects.

Results

We propose a method capable of scanning genetic variants to identify the region most likely harbouring disease gene with rare and/or common causal variants. Our method assigns a score at each individual variant based on our scoring system. It uses aggregate scores to identify the region with disease association. We evaluate performance by simulation based on 1000 Genomes sequencing data and compare with three commonly used methods. We use a Parkinson’s disease case–control dataset as a model to demonstrate the application of our method.Our method has better power than CMC and WSS and similar power to SKAT-O with well-controlled type I error under simulation based on 1000 Genomes sequencing data. In real data analysis, we confirm the association of α-synuclein gene (SNCA) with Parkinson’s disease (p = 0.005). We further identify association with hyaluronan synthase 2 (HAS2, p = 0.028) and kringle containing transmembrane protein 1 (KREMEN1, p = 0.006). KREMEN1 is associated with Wnt signalling pathway which has been shown to play an important role for neurodegeneration in Parkinson’s disease.

Conclusions

Our method is time efficient and less sensitive to inclusion of neutral variants and direction effect of causal variants. It can narrow down a genomic region or a chromosome to a disease associated region. Using Parkinson’s disease as a model, our method not only confirms association for a known gene but also identifies two genes previously found by other studies. In spite of many existing methods, we conclude that our method serves as an efficient alternative for exploring genomic data containing both rare and common variants.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0088-9) contains supplementary material, which is available to authorized users.  相似文献   
37.
In this article, we report the synthesis of Na2Sr1‐x(PO4)F:Eux phosphor via a combustion method. The influence of different annealing temperatures on the photoluminescence properties was investigated. The phosphor was excited at both 254 and 393 nm. Na2Sr1‐x(PO4)F:Eux3+ phosphors emit strong orange and red color at 593 and 612 nm, respectively, under both excitation wavelengths. Na2Sr1‐x(PO4)F:Eux3+ phosphors annealed at 1050°C showed stronger emission intensity compared with 600, 900 and 1200°C. Moreover, Na2Sr1‐x(PO4)F:Eux3+ phosphor was found to be more intense when compared with commercial Y2O3:Eu3+ phosphor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
38.
AIMS: To isolate and characterize bacteria from nature capable of producing poly-beta-hydroxyalkanoates in high yields from soy molasses oligosaccharides. METHODS AND RESULTS: Several strains of bacteria were obtained from enrichment cultures employing raffinose as major carbon source and inoculated with soybean field soil, lake sediment, or lake water. Many of the isolates were Bacillus species and produced polyhydroxyalkanoates (PHAs) to high yield. The raffinose-degrading isolates produced endospores, were highly saccharolytic, and both respired and fermented a variety of mono-, di-, tri- and tetrasaccharides. Strain CL1 produced 90% of cell dry mass as PHA from various sugars, including raffinose, and did so without requiring a nutrient limitation. CONCLUSIONS: Strain CL1 could be the catalyst for an industrial fermentation converting soy molasses and other waste carbohydrates to PHAs. The properties of this organism that make it ideally suited for such a fermentation include (i) its ability to use a wide variety of plant-associated carbohydrates as PHA feedstocks; (ii) its rapid growth; (iii) its ability to grow under anoxic conditions; and (iv) its ability to produce spores. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of bacteria capable of making biodegradable plastics to high yield from soy molasses oligosaccharides.  相似文献   
39.
Erratum     
Neurotransmitter receptor trafficking and the regulation of synaptic strength. Traffic 2001:2(7):437–448.  相似文献   
40.
Despite recent advances in blood safety by careful donor selection and implementation of infectious disease testing, transmission of viruses, bacteria and parasites by transfusion can still rarely occur. One approach to reduce the residual risk from currently tested pathogens and to protect against the emergence of new ones is to investigate methods for pathogen inactivation. The use of photosensitizing dyes for pathogen inactivation has been studied in both red cell and platelet blood components. Optimal properties of sensitizing dyes for use in red cell suspensions include selection of dyes that traverse cell and viral membranes, bind to nucleic acids, absorb light in the red region of the spectrum, inactivate a wide range of pathogens, produce little red cell photodamage from dye not bound to nucleic acid and do not hemolyze red cells in the dark. Early research at the American Red Cross focused on the use of a class of dyes with rigid structures, such as the phenothiazine dyes, beginning with the prototypical sensitizer methylene blue. Results revealed that methylene blue phototreatment could inactivate extracellular virus, but resulted in undesirable defects in the red cell membrane that resulted in enhanced hemolysis that became evident during extended refrigerated blood storage. In addition, methylene blue phototreatment could neither inactivate intracellular viruses nor appreciably inactivate bacteria under conditions of extracellualar viral killing. Attempts to improve intracellular viral inactivation led to the investigations of more hydrophobic phenothiazines, such as methylene violet or dimethylmethylene blue. Although these dyes could inactivate intracellular virus, problems with increased red cell membrane damage and hemolysis persisted or increased. Further studies using red cell additive storage solutions containing high levels of the impermeable ion, citrate, to protect against colloidal osmotic hemolysis as well as competitive inhibitors to limit sensitizer binding to red cell membranes revealed that photoinduced hemolysis stemmed from dye bound to the red cell membrane as well as dye free in solution. Use of red cell additive solutions to prevent colloidal-osmotic hemolysis and use of novel flexible dyes that only act as sensitizers when bound to their targets are two techniques that currently are under investigation for reducing red cell damage. Ultimately, the decision to implement a photodynamic method for pathogen reduction will be determined by weighing the risks of unintended adverse consequences of the procedure itself, such as the potential for genotoxicity and allergic reactions, against the cost and benefits of its implementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号