首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10492篇
  免费   832篇
  国内免费   705篇
  12029篇
  2024年   24篇
  2023年   153篇
  2022年   358篇
  2021年   576篇
  2020年   377篇
  2019年   442篇
  2018年   482篇
  2017年   370篇
  2016年   441篇
  2015年   641篇
  2014年   705篇
  2013年   803篇
  2012年   985篇
  2011年   868篇
  2010年   490篇
  2009年   421篇
  2008年   572篇
  2007年   479篇
  2006年   418篇
  2005年   353篇
  2004年   273篇
  2003年   250篇
  2002年   185篇
  2001年   172篇
  2000年   146篇
  1999年   152篇
  1998年   91篇
  1997年   94篇
  1996年   93篇
  1995年   78篇
  1994年   86篇
  1993年   64篇
  1992年   58篇
  1991年   74篇
  1990年   58篇
  1989年   42篇
  1988年   32篇
  1987年   17篇
  1986年   23篇
  1985年   18篇
  1984年   17篇
  1983年   20篇
  1982年   8篇
  1980年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
AMPH1, an abundant protein in nerve terminals, plays a critical role in the recruitment of dynamin to sites of clathrin‐mediated endocytosis. Recently, it is reported to be involved in breast cancer and lung cancer. However, the impact of AMPH1 on ovarian cancer is unclear. In this study, we used gain‐of‐function and loss‐of‐function methods to explore the role of AMPH1 in ovarian cancer cells. AMPH1 inhibited ovarian cancer cell growth and cell migration, and promoted caspase‐3 activity, resulting in the increase of cell apoptosis. In xenograft mice model, AMPH1 prevented tumour progression. The anti‐oncogene effects of AMPH1 on ovarian cancer might be partially due to the inhibition of PI3K/AKT signalling pathway after overexpression of AMPH1. Immunohistochemistry analysis showed that the staining of AMPH1 was remarkably reduced in ovarian cancer tissues compared with normal ovarian tissues. In conclusion, our study identifies AMPH1 as a tumour suppressor in ovarian cancer in vitro and in vivo. This is the first evidence that AMPH1 inhibited cell growth and migration, and induced apoptosis via the inactivation of PI3K/AKT signalling pathway on ovarian cancer, which may be used as an effective strategy.  相似文献   
92.
Bone loss (osteopenia) is a common complication in human solid tumour. In addition, after surgical treatment of gynaecological tumour, osteoporosis often occurs due to the withdrawal of oestrogen. The major characteristic of osteoporosis is the low bone mass with micro-architectural deteriorated bone tissue. And the main cause is the overactivation of osteoclastogenesis, which is one of the most important therapeutic targets. Inflammation could induce the interaction of RANKL/RANK, which is the promoter of osteoclastogenesis. Triptolide is derived from the traditional Chinese herb lei gong teng, presented multiple biological effects, including anti-cancer, anti-inflammation and immunosuppression. We hypothesized that triptolide could inhibits osteoclastogenesis by suppressing inflammation activation. In this study, we confirmed that triptolide could suppress RANKL-induced osteoclastogenesis in bone marrow mononuclear cells (BMMCs) and RAW264.7 cells and inhibited the osteoclast bone resorption functions. PI3K-AKT-NFATc1 pathway is one of the most important downstream pathways of RANKL-induced osteogenesis. The experiments in vitro indicated that triptolide suppresses the activation of PI3K-AKT-NFATc1 pathway and the target point located at the upstream of AKT because both NFATc1 overexpression and AKT phosphorylation could ameliorate the triptolide suppression effects. The expression of MDM2 was elevated, which demonstrated the MDM-p53-induced cell death might contribute to the osteoclastogenesis suppression. Ovariectomy-induced bone loss and inflammation activation were also found to be ameliorated in the experiments in vivo. In summary, the new effect of anti-cancer drug triptolide was demonstrated to be anti-osteoclastogenesis, and we demonstrated triptolide might be a promising therapy for bone loss caused by tumour.  相似文献   
93.
94.
CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.  相似文献   
95.
Shen  He  Wu  Shuyu  Chen  Xi  Xu  Bai  Ma  Dezun  Zhao  Yannan  Zhuang  Yan  Chen  Bing  Hou  Xianglin  Li  Jiayin  Cao  Yudong  Fu  Xianyong  Tan  Jun  Yin  Wen  Li  Juan  Meng  Li  Shi  Ya  Xiao  Zhifeng  Jiang  Xingjun  Dai  Jianwu 《中国科学:生命科学英文版》2020,63(12):1879-1886
Science China Life Sciences - Spinal cord injury (SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we...  相似文献   
96.
Eukaryotic organisms activate conserved signalling networks to maintain genomic stability in response to DNA genotoxic stresses. However, the coordination of this response pathway in fungal pathogens remains largely unknown. In the present study, we investigated the mechanism by which the northern corn leaf blight pathogen Setosphaeria turcica controls maize infection and activates self-protection pathways in response to DNA genotoxic insults. Appressorium-mediated maize infection by S. turcica was blocked by the S-phase checkpoint. This repression was dependent on the checkpoint central kinase Ataxia Telangiectasia and Rad3 related (ATR), as inhibition of ATR activity or knockdown of the ATR gene recovered appressorium formation in the presence of genotoxic reagents. ATR promoted melanin biosynthesis in S. turcica as a defence response to stress. The melanin biosynthesis genes StPKS and StLac2 were induced by the ATR-mediated S-phase checkpoint. The responses to DNA genotoxic stress were conserved in a wide range of phytopathogenic fungi, including Cochliobolus heterostrophus, Cochliobolus carbonum, Alternaria solani, and Alternaria kikuchiana, which are known causal agents for plant diseases. We propose that in response to genotoxic stress, phytopathogenic fungi including S. turcica activate an ATR-dependent pathway to suppress appressorium-mediated infection and induce melanin-related self-protection in addition to conserved responses in eukaryotes.  相似文献   
97.
Li  H. X.  Liu  R. Q.  Zhang  H. M.  Cao  Z. X.  Zhu  L. X.  Li  Y. Y.  Ding  W. J.  Chen  Y. H.  Deng  Y. 《Russian Journal of Bioorganic Chemistry》2020,46(3):306-311
Russian Journal of Bioorganic Chemistry - AIDS/HIV is a serious life-threatening and public health problem that urges for new antiviral drugs to control. A bis-indole alkaloid voacamine has been...  相似文献   
98.
Wu  Yanping  Xu  Han  Cao  Xuefang  Liu  Rongrong  Tang  Li  Zeng  Zhonghua  Li  Weifen 《Probiotics and antimicrobial proteins》2020,12(2):649-656

Probiotics have always been considered as a supplementary therapy for many diseases especially gut disorders. The absorption and barrier function of the gut play a vital role in the maintenance of body homeostasis. This study was to investigate the protective effects of Bacillus amyloliquefaciens SC06 (Ba) on H2O2-induced oxidative stress on intestinal porcine epithelial cells (IPEC-1) based on the level of gene expression. We demonstrated that Ba was a safe probiotic strain in the first place. Results showed that treatment with H2O2 significantly increased the mRNA expression of absorptive transporters glucose transporter 2 (GLUT2), Ala/Ser/Cys/Thr transporter 1 (ASCT1), and ASCT2 compared with the control group. Meanwhile, oxidative stress induced a significant improvement in the mRNA expression of occludin (OCLN) and caspase-3, and remarkably inhibited the expression of L-type amino acid transporter 1 (LAT1) or B cell lymphoma-2 (Bcl-2), respectively. Pretreatment with Ba dramatically reversed the disturbance induced by oxidative stress on the mRNA expression of ASCT1, ASCT2, and OCLN, which also significantly prevented H2O2-inhibited LAT1 and Bcl-2 mRNA expression. However, Ba failed to exert any significant protective effect on GLUT2 and caspase-3 mRNA expression. We concluded that pretreatment with Ba could alleviate the damage caused by oxidative stress to a certain extent and conferred a protective effect to the intestine.

  相似文献   
99.
100.
Guo  Kaiqiang  Cao  Yin  Li  Zan  Zhou  Xiaoxiao  Ding  Rong  Chen  Kejing  Liu  Yan  Qiu  Yingkun  Wu  Zhen  Fang  Meijuan 《Amino acids》2020,52(5):793-809
Amino Acids - Glycine plays a key role in rapidly proliferating cancer cells such as A549 cells. Targeting glycine metabolism is considered as a potential means for cancer treatment. However, the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号