首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   51篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2018年   3篇
  2017年   7篇
  2016年   8篇
  2015年   23篇
  2014年   20篇
  2013年   33篇
  2012年   42篇
  2011年   31篇
  2010年   16篇
  2009年   13篇
  2008年   27篇
  2007年   25篇
  2006年   34篇
  2005年   34篇
  2004年   39篇
  2003年   29篇
  2002年   25篇
  2001年   16篇
  2000年   13篇
  1999年   19篇
  1998年   7篇
  1997年   6篇
  1996年   9篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   14篇
  1991年   8篇
  1990年   13篇
  1989年   9篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1984年   4篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1974年   8篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1969年   3篇
  1966年   3篇
排序方式: 共有646条查询结果,搜索用时 15 毫秒
41.
Oxidative stress and ferrous metabolism are important in the pathogenesis in Parkinson's disease. In dopaminergic neurons, several stress proteins are upregulated under oxidative stress. To clarify this mechanism, we investigated hemin-related signal transduction and the induction of oxidative stress-related proteins in SH-SY5Y cells. We identified phosphatidylinositol 3-kinase (PI3K) and Nrf2 as important molecules in the induction of heme oxygenase-1, thioredoxin, and peroxiredoxin-I. PI3K-related signal controlled Nrf2 activation, and consequently, PI3K inhibitors blocked the nuclear translocation of Nrf2 and induction of stress proteins. These observations suggest that PI3K and Nrf2 are key molecules in maintaining suitable conditions under oxidative stress and ferrous metabolism.  相似文献   
42.
There are various antigenic variants of Orientia tsutsugamushi which are distinguished by immunological and molecular genetic methods targeted at the antigenic diversity of 56-kDa type-specific antigen proteins. The present study was performed to analyze 15 strains successfully isolated from rodents in Saitama Prefecture, Japan, by 56-kDa gene sequence homologies, reactivities with type-specific monoclonal antibodies and polymerase chain reaction (PCR) using type-specific primer-pairs. We demonstrated the presence of a new type of O. tsutsugamushi among the isolates. This new type, designated as the Saitama type, was located in the branch of Karp type in the phylogenetic tree based on 56-kDa gene sequences, but distant from the known Karp types, such as Karp, JP-1 and JP-2, showing less than 90% homology. Strains of this type could not be distinguished by immunological methods from Karp type strains, but a new primer-pair for PCR which specifically amplifies the DNA of this new type strain was designed. This primer-pair may serve to find this strain type in future studies.  相似文献   
43.
Phosphatidylinositol 3-kinase (PI3K) is a key molecule mediating signals of insulin in vascular smooth muscle cells (VSMCs). To examine the effect of chronic activation of PI3K on the gene expression of VSMCs, membrane-targeted p110CAAX, a catalytic subunit of PI3K, was overexpressed in rat VSMCs by adenovirus-mediated gene transfer. Similar to insulin's effects, cells overexpressing p110CAAX exhibited a 10- to 15-fold increase in monocyte chemoattractant protein-1 (MCP-1) mRNA expression as compared with the control cells. Electrophoretic mobility shift assay analysis showed that the overexpression of p110CAAX activated neither the NF-kappaB binding nor the activator protein (AP-1) binding activities. We found that two CCAAT/enhancer binding protein (C/EBP) binding sites located between 2.6 and 3.6 kb upstream of the MCP-1 gene were responsible for the induction by p110CAAX. The overexpression of C/EBP-beta and C/EBP-delta but not C/EBP-alpha caused 6- to 8-fold induction of MCP-1 promoter activity. Consistently, the overexpression of p110CAAX as well as insulin induced mRNA expression and nuclear expression of C/EBP-beta and C/EBP-delta in VSMCs. These results clearly indicate that the activation of PI3K induced proinflammatory gene expression through activating C/EBP-beta and C/EBP-delta but not NF-kappaB, which may explain the proinflammatory effect of insulin in the insulin-resistant state.  相似文献   
44.
In the last three decades, several monkeys reared in outdoor/indoor-outdoor breeding colonies and cages of the Primate Research Institute, Kyoto University, died of yersiniosis caused by Yersinia pseudotuberculosis, necessitating introduction of a method to detect the bacteria rapidly and thus allow preventive measures to be undertaken. A rapid nested polymerase chain reaction (PCR) method for identification of Y. pseudotuberculosis in fecal samples and a random amplified polymorphic DNA (RAPD)-PCR approach for distinguishing between bacterial strains were therefore developed. Yersinia pseudotuberculosis isolates from monkey specimens were found to be classifiable into several types. To determine the source of infection, hundreds of fecal samples of wild rats, pigeons, and sparrows were collected from around the breeding colonies and cages, and subjected to PCR analyses. Yersinia pseudotuberculosis was detected in 1.7% of the fecal samples of wild rats. The DNA fingerprints of the bacteria revealed by RAPD-PCR were the same as that of one strain isolated from macaques, suggesting the wild rat to be a possible source of infection.  相似文献   
45.
The protease-activated receptor-2 (PAR-2), a G protein-coupled receptor activated by trypsin, contributes to the pathogenesis of inflammatory disease including asthma. Here, we examined the mechanisms by which stimulation of PAR-2 induces an increase in intracellular Ca2+ concentration ([Ca2+]i) in guinea pig tracheal epithelial cells. Trypsin (0.01-3 units/ml) dose-dependently induced a transient increase in [Ca2+]i, the increase being blocked by soybean trypsin inhibitor (SBTI 1 microM). An increase in [Ca2+]i was also induced by an agonist peptide for PAR-2 (SLIGRL-NH2, 0.001-10 microM) but not by thrombin (3 units/ml, an activator for PAR-1, PAR-3 or PAR-4). Repeated or cross stimulation of trypsin or SLIGRL-NH2 caused marked desensitization of the [Ca2+]i response. These responses of [Ca2+]i to trypsin and SLIGRL-NH2 were attenuated by a phospholipase C inhibitor, U-73122, and a Ca2+-ATPase inhibitor, thapsigargin (100 nM), while removal of Ca2+ and a L-type Ca2+-channel blocker, verapamil, were without significant effects. Further, trypsin was without effect on the rate of fura 2 quenching by Mn2+ entry as an indicator of Ca2+ influx. Thus, stimulation of PAR-2 appears to increase [Ca2+]i through the mobilization of Ca2+ from intracellular stores probably via phospholipase Cbeta-linked generation of a second messenger.  相似文献   
46.
47.
48.
Many physiological, cellular, and biochemical parameters in the retina of vertebrates show daily rhythms that, in many cases, also persist under constant conditions. This demonstrates that they are driven by a circadian pacemaker. The presence of an autonomous circadian clock in the retina of vertebrates was first demonstrated in Xenopus laevis and then, several years later, in mammals. In X. laevis and in chicken, the retinal circadian pacemaker has been localized in the photoreceptor layer, whereas in mammals, such information is not yet available. Recent advances in molecular techniques have led to the identification of a group of genes that are believed to constitute the molecular core of the circadian clock. These genes are expressed in the retina, although with a slightly different 24-h profile from that observed in the central circadian pacemaker. This result suggests that some difference (at the molecular level) may exist between the retinal clock and the clock located in the suprachiasmatic nuclei of hypothalamus. The present review will focus on the current knowledge of the retinal rhythmicity and the mechanisms responsible for its control.  相似文献   
49.
We previously found that disruption of Kir6.2-containing ATP-sensitive K+ (KATP) channels increases glucose uptake in skeletal muscle, but the mechanism is not clear. In the present study, we generated knockout mice lacking both Kir6.2 and insulin receptor substrate-1 (IRS-1). Because IRS-1 is the major substrate of insulin receptor kinase, we expected disruption of the IRS-1 gene to reduce glucose uptake in Kir6.2 knockout mice. However, the double-knockout mice do not develop insulin resistance or glucose intolerance. An insulin tolerance test reveals the glucose-lowering effect of exogenous insulin in double-knockout mice and in Kir6.2 knockout mice to be similarly enhanced compared with wild-type mice. The basal 2-deoxyglucose uptake rate in skeletal muscle of double-knockout mice is increased similarly to the rate in Kir6.2 knockout mice. Accordingly, disruption of the IRS-1 gene affects neither systemic insulin sensitivity nor glucose uptake in skeletal muscles of Kir6.2-deficient mice. In addition, no significant changes were observed in phosphatidylinositol 3-kinase (PI3K) activity and its downstream signal in skeletal muscle due to lack of the Kir6.2 gene. Disruption of Kir6.2-containing Katp channels clearly protects against IRS-1-associated insulin resistance by increasing glucose uptake in skeletal muscles by a mechanism separate from the IRS-1/PI3K pathway.  相似文献   
50.
Cytosolic glutathione peroxidase (GPX-1) is an important antioxidant enzyme that scavange hydrogen peroxide in mammalian cells. The level of GPX-1 activity in Japanese monkey (Macaca fuscata) tissues was determined and it was found to be high in the liver, kidney, and adrenal gland followed by the small intestine. We also cloned the GPX-1 cDNA that included the whole protein-coding region. The active-site selenocysteine was assumed to be encoded by a TGA codon. Compared to the GPX-1s of other mammalian species, essential residues in catalysis were well conserved in monkey GPX-1. Amino acid substitutions were frequent in the N- and C-terminal regions which are less essential in catalysis. Expression of GPX-1 mRNA was found to be high in the liver, kidney, and adrenal gland, in consistence with the tissue distribution of GPX-1 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号