首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1658篇
  免费   96篇
  2023年   6篇
  2022年   11篇
  2021年   29篇
  2020年   12篇
  2019年   29篇
  2018年   37篇
  2017年   28篇
  2016年   30篇
  2015年   61篇
  2014年   83篇
  2013年   75篇
  2012年   127篇
  2011年   129篇
  2010年   60篇
  2009年   58篇
  2008年   137篇
  2007年   118篇
  2006年   112篇
  2005年   95篇
  2004年   84篇
  2003年   105篇
  2002年   90篇
  2001年   18篇
  2000年   25篇
  1999年   19篇
  1998年   17篇
  1997年   10篇
  1996年   13篇
  1995年   12篇
  1994年   11篇
  1993年   8篇
  1992年   10篇
  1991年   8篇
  1990年   9篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1976年   3篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1971年   5篇
  1969年   3篇
  1968年   2篇
排序方式: 共有1754条查询结果,搜索用时 15 毫秒
91.
92.
The alpha 2B -adrenergic receptor ( alpha 2B -AR), a member of the G protein-coupled receptor (GPCR) superfamily, was expressed at high levels from Semliki Forest virus (SFV) vectors in mammalian cells. Constructs were engineered by fusing enhanced green fluorescent protein (eGFP) and the SFV capsid to opposite ends of the alpha 2B -AR. The receptor fusions alpha 2B -AR-eGFP and CAP- alpha 2B -AR expressed in CHO-K1 cells generated alpha 2B values of 176 and 122pmol/mg of membrane protein, respectively, and showed similar ligand binding characteristics, alpha 2B -AR subtype-selectivity, and G protein activation as reported for stable expression in CHO-K1 cells. Cryo-electron microscopy and eGFP-based fluorescence indicated the same subcellular receptor distribution. SFV expression is well suited for studies on the pharmacology, biochemistry, and cell biology of GPCRs, and for large-scale recombinant protein production in mammalian suspension culture to generate sufficient receptor quantities for structural biology.  相似文献   
93.
The purpose of this research was to improve the stability of carbamazepine (CBZ) bulk powder under high humidity by surface modification. The surface-modified anhydrates of CBZ were obtained in a specially designed surface modification apparatus at 60°C via the adsorption of n-butanol, and powder x-ray diffraction, Fourier-Transformed Infrared spectra, and differential scanning calorimetry were used to determine the crystalline characteristics of the samples. The hydration process of intact and surface-modified CBZ anhydrate at 97% relative humidity (RH) and 40±1°C was automatically monitored by using isothermal microcalorimetry (IMC). The dissolution test for surface-modified samples (20 mg) was performed in 900 mL of distilled water at 37±0.5°C with stirring by a paddle at 100 rpm as in the Japanese Pharmacopoeia XIII. The heat flow profiles of hydration of intact and surface-modified CBZ anhydrates at 97% RH by using IMC profiles showed a maximum peak at around 10 hours and 45 hours after 0 and 10 hours of induction, respectively. The result indicated that hydration of CBZ anhydrate was completely inhibited at the initial stage by surface modification of n-butanol and thereafter transformed into dihydrate. The hydration of surface-modified samples followed a 2-dimensional phase boundary process with an induction period (IP). The IP of intact and surface-modified samples decreased with increase of the reaction temperature, and the hydration rate constant (k) increased with increase of the temperature. The crystal growth rate constants of nuclei of the intact sample were significantly larger than the surface-modified samples at each temperature. The activation energy (E) of nuclei formation and crystal growth process for hydration of surface-modified CBZ anhydrate were evaluated to be 20.1 and 32.5 kJ/mol, respectively, from Arrhenius plots, but the Es of intact anhydrate were 56.3 and 26.8 kJ/mol, respectively. The dissolution profiles showed that the surface-modified sample dissolved faster than the intact sample at the initial stage. The dissolution kinetics were analyzed based on the Hixon-Crowell equation, and the dissolution rate constants for intact and surface-modified anhydrates were found to be 0.0102±0.008 mg1/3 min−1 and 0.1442±0.0482 mg1/3·min−1. The surface-modified anhydrate powders were more stable than the nonmodified samples under high humidity and showed resistance against moisture. However, surface modification induced rapid dissolution in water compared to the control.  相似文献   
94.
Many G protein-coupled receptors (GPCRs) are internalized from the plasma membrane after agonist exposure. Previously, marked agonist-induced internalization of human alpha2A- and alpha2B-adrenergic receptors (AR) was observed in transfected neuronal rat pheochromocytoma (PC12) cells; alpha2A- and alpha2B-AR were internalized into partly distinct intracellular vesicles (Olli-L?hdesm?ki et al., J. Neurosci. 19, 9281-9288, 1999). In this paper, the extent of alpha2-AR internalization was quantitated in human embryonic kidney (HEK-293) and PC12 cells by combined application of cell surface biotinylation and ELISA methods, which allow measurement of protein trafficking in intact, differentiated and undifferentiated cells. Significant subtype-specific (but not cell type-dependent) trafficking of human alpha2-AR was observed by quantitation and immunocytochemistry. Agonist-induced sequestration of alpha2B-AR was markedly reduced after blocking the formation of clathrin-coated vesicles by hyperosmotic sucrose pretreatment. The sequestration of alpha2A-AR was partly inhibited after sucrose pretreatment but could be further reduced after inhibiting the formation of both clathrin-coated and caveolin vesicles by combined pretreatment with hyperosmotic sucrose and filipin. Differences were also observed in the recycling of alpha2A- and alpha2B-AR. The extent of maximal agonist-induced sequestration in PC12 cells was not directly dependent on relative agonist efficacy.  相似文献   
95.
The toxicity and effects on protein synthesis of the phthalate esters diethyl phthalate (DEP) and di(2-ethylhexyl) phthalate (DEHP) was studied in radish seedlings (Raphanus sativus cv. Kööpenhaminan tori). Phthalate esters are a class of commercially important compounds used mainly as plasticizers in high molecular-weight polymers such as many plastics. They can enter soil through various routes and can affect plant growth and development. First the effect of DEP and DEHP on the growth of radish seedlings was determined in an aqueous medium. It was found that DEP, but not DEHP, caused retardation of growth in radish. A further investigation on protein synthesis during DEP-stress was executed by in vivo protein labeling combined with two-dimensional gel electrophoresis (2D-PAGE). For comparisons with known stress-induced proteins a similar experiment was done with heat shock, and the induced heat shock proteins (HSPs) were compared with those of DEP-stress. The results showed that certain HSPs can be used as an indicator of DEP-stress, although the synthesis of most HSPs was not affected by DEP. DEP also elicited the synthesis of numerous proteins found only in DEP-treated roots. The toxic effect of phthalate esters and the roles of the induced proteins are discussed.  相似文献   
96.
The enzyme nitric oxide synthase (NOS) is exquisitely regulated in vivo by the Ca(2+) sensor protein calmodulin (CaM) to control production of NO, a key signaling molecule and cytotoxin. The differential activation of NOS isozymes by CaM has remained enigmatic, despite extensive research. Here, the crystallographic structure of Ca(2+)-loaded CaM bound to a 20 residue peptide comprising the endothelial NOS (eNOS) CaM-binding region establishes their individual conformations and intermolecular interactions, and suggests the basis for isozyme-specific differences. The alpha-helical eNOS peptide binds in an antiparallel orientation to CaM through extensive hydrophobic interactions. Unique NOS interactions occur with: (i). the CaM flexible central linker, explaining its importance in NOS activation; and (ii). the CaM C-terminus, explaining the NOS-specific requirement for a bulky, hydrophobic residue at position 144. This binding mode expands mechanisms for CaM-mediated activation, explains eNOS deactivation by Thr495 phosphorylation, and implicates specific hydrophobic residues in the Ca(2+) independence of inducible NOS.  相似文献   
97.
98.
Spin probing methods using an electron spin resonance (ESR) spectrometer are used extensively and bring us a lot of information about in vivo redox mechanisms. However, the in vivo reducing mechanisms of exogenous nitroxide radicals, which serve as typical spin probing reagents are not clear. To clarify this, we examined the sequential kinetics of a spin probe, 4-hydroxy 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) in the in vivo organs, tissue homogenates and subcellular fractions of kidney and liver using an in vivo and X-band ESR spectrometers. As a parameter of reducing activity, we calculated the half-life of TEMPOL from the decay curve of ESR signal intensity. The half-life of TEMPOL in the whole organs and homogenates of the kidney was significantly shorter than that of the liver, this indicates that the kidney has more reducing activity against TEMPOL as compared to the liver. Subcellular fractional studies revealed that this reducing activity of the kidney mainly exists in the mitochondria. Contrarily, in addition to reduction in the mitochondria, TEMPOL in the liver was reduced by the microsome and cytosol.  相似文献   
99.
Real time observation of reaction kinetics is one of the key features of the newly developed microparticle based two-photon excitation fluorescence immunoassay system (TPX). By observing binding reactions at the surface of individual microparticles during the incubation of an assay, the binding constants of an assay become apparent. This paper describes the use of the new system in quantifying the reaction parameters of human thyroid stimulating hormone (hTSH) assay. A mechanistic reaction model for the assay is presented. The reaction model is further shown to precisely predict the behaviour of the assay kinetics over a wide range of analyte concentrations.  相似文献   
100.
The pineal complex, deep brain, and skin have been known to function as extraretinal photoreceptors in non-mammalian vertebrates. To see the diversity of localization of extraretinal photoreceptors in lower vertebrates having different habitats, we analyzed the opsin-like immunoreactivities in anuran amphibians, Xenopus laevis, Rana catesbeiana, Rana nigromaculata, and Bufo japonicus. An antiserum (toad Rh-AS) was raised against rhodopsin purified from the retinas of Japanese toad, B. japonicus. In the retina of all the anurans examined, the outer segments of rods were immunopositive to toad Rh-AS. The outer segments of most pinealocytes were immunopositive in R. catesbeiana, R. nigromaculata, and B. japonicus. The outer segments of photoreceptor-like cells within the frontal organ of R. nigromaculata were immunostained. Interestingly, toad Rh-AS immunostained many secretory cells of mucous glands in the head skin of B. japonicus, implying the presence of a novel photoreceptive molecule. Within the hypothalamus, toad Rh-AS immunostained many cells in the magnocellular preoptic nucleus of R. catesbeiana and B. japonicus. Toad Rh-AS also labeled cerebrospinal fluid (CSF)-contacting cells in the anterior preoptic nucleus of R. nigromaculata and those adjacent to the lateral ventricle within the septum of R. catesbeiana. Thus the distribution patterns of the rhodopsin-like immunoreactivities among the anurans were highly diverged, and there was no relationship between the distribution patterns and their habitats. J. Exp. Zool. 286:136-142, 2000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号