首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   10篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   6篇
  2016年   4篇
  2015年   9篇
  2014年   9篇
  2013年   15篇
  2012年   14篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   9篇
  2007年   9篇
  2006年   4篇
  2005年   7篇
  2004年   3篇
  2003年   9篇
  2002年   9篇
  2001年   10篇
  2000年   10篇
  1999年   6篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
131.
As an alternative approach to conventional allergen-specific immunotherapy, transgenic rice seed expressing a major house dust mite (HDM) allergen, Der p 1, was developed as an edible vaccine. The C-terminal KDEL-tagged Der p 1 allergen specifically accumulated in seed endosperm tissue under the control of the endosperm-specific GluB1 promoter. Der p 1 reached a maximum concentration of 58 μg/grain and was deposited in the endoplasmic reticulum (ER)-derived protein body I (PB-I). Plant-derived Der p 1 was posttranslationally modified with high-mannose-type glycan structures. Glycosylated Der p 1 displayed reduced IgE binding capacity in comparison with its unglycosylated counterpart in vitro. Our results indicate that transgenic Der p 1 rice seeds are a safe, potential oral delivery vaccine for the treatment of HDM allergy.  相似文献   
132.

Introduction

Cholera toxin B subunit (CTB) is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale) hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants.

Methodology/Principal Findings

In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB) was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro.

Conclusions/Significance

Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major biological activities of the original protein. This rapid and easily scalable system may enable the implementation of pCTB to mass vaccination against outbreaks, thereby providing better protection of high-risk populations in developing countries.  相似文献   
133.
Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.  相似文献   
134.
The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time.  相似文献   
135.
Genetic transformation systems using reporter genes in whole plants have a wide variety of applications for molecular biological study including the visualization of expression patterns of particular genes and intracellular biological phenomena as well as the identification of novel genes. In this study, we assessed co-expression of each three codon-optimized reporter genes and a selectable marker in the nuclear transformation system of whole Pyropia yezoensis, a red marine alga. With the use of an endogenous promoter, both the codon-optimized hygromycin resistance gene and ß-glucuronidase gene (PyGUS) were co-expressed in P. yezoensis cells. A high level of GUS activity was observed in 60 % of the individuals in hygromycin-resistant lines. A histochemical GUS assay revealed that the PyGUS reporter gene was stably introduced and expressed throughout the algae's life cycle. In addition, two live cell reporters, humanized cyan fluorescent protein from Anemonia majano and luciferase from Gaussia princeps, were successfully expressed in whole P. yezoensis. The development of this transformation system involving three types of reporter genes provides opportunities for monitoring temporal changes in gene expression and for genetic screening in red marine algae.  相似文献   
136.
The rod cells in frog taste discs display the outward current and maintain the negative resting potential in the condition where internal K+ is replaced with Cs+. We analyzed the properties of the Cs+-permeable conductance in the rod cells. The current–voltage (I/V) relationships obtained by a voltage ramp were bell-shaped under Cs+ internal solution. The steady state I/V relationships elicited by voltage steps also displayed the bell-shaped outward current. The activation of the current accelerated with the depolarization and the inactivation appeared at positive voltage. The gating for the current was maintained even at symmetric condition (Cs+ external and internal solutions). The wing cells did not show the properties. The permeability for K+ was a little larger than that for Cs+. Internal Na+ and NMDG+ could not induce the bell-shaped outward current. Carbenoxolone inhibited the bell-shaped outward Cs+ current dose dependently (IC50: 27 μM). Internal arachidonic acid (20 μM) did not induce the linear current–voltage (I–V) relationship which is observed in two-pore domain K+ channel (K2P). The results suggest that the resting membrane potentials in the rod cells are maintained by the voltage-gated K+ channels.  相似文献   
137.
138.
Crohn's disease (CD) is associated with gut barrier dysfunction. Besides the baseline barrier defect, a subgroup of patients also expresses an intestinal barrier hyperresponsiveness to nonsteroidal anti-inflammatory drugs. On the other hand, the anti-tumour necrosis factor alpha (TNF-α) treatment has brought benefits to these patients. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, and Etanercept (ETC), a TNF-α antagonist on the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. A total of 47 Wistar rats were randomized into seven groups, as follows: (1) Sham: sham induced-colitis; (2) TNBS: nontreated induced-colitis; (3) Lumiracoxib control; (4) Lumiracoxib-treated induced-colitis; (5) ETC control; (6) ETC-treated induced-colitis; (7) Lumiracoxib-ETC-treated induced-colitis. Rats from groups 6 and 7 presented significant improvement of macroscopic and histopathological damages in the distal colon. The gene expression of COX-2 mRNA, as well of TNF-α mRNA, decreased significantly in groups 6 and 7 compared to the TNBS nontreated and lumiracoxib-treated groups. The treatment only with lumiracoxib did not reduce the inflammation on TNBS-induced experimental colitis. ETC attenuated the damage seen in the colon and reduced the inflammation caused by TNBS. Our results suggest that down-regulation of TNF-α and COX-2 resulted in a decrease in inflammation caused by TNBS and thus provided some protection from the colonic damage caused by TNBS.  相似文献   
139.
140.
Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号