首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3890篇
  免费   312篇
  国内免费   1篇
  4203篇
  2022年   16篇
  2021年   40篇
  2020年   21篇
  2019年   37篇
  2018年   50篇
  2017年   45篇
  2016年   71篇
  2015年   93篇
  2014年   123篇
  2013年   181篇
  2012年   173篇
  2011年   214篇
  2010年   124篇
  2009年   111篇
  2008年   177篇
  2007年   185篇
  2006年   175篇
  2005年   151篇
  2004年   200篇
  2003年   154篇
  2002年   149篇
  2001年   151篇
  2000年   158篇
  1999年   120篇
  1998年   47篇
  1997年   48篇
  1996年   30篇
  1995年   46篇
  1994年   36篇
  1993年   29篇
  1992年   92篇
  1991年   83篇
  1990年   72篇
  1989年   85篇
  1988年   74篇
  1987年   85篇
  1986年   59篇
  1985年   71篇
  1984年   50篇
  1983年   30篇
  1982年   32篇
  1981年   27篇
  1979年   36篇
  1978年   19篇
  1977年   20篇
  1975年   16篇
  1974年   22篇
  1973年   28篇
  1971年   16篇
  1966年   17篇
排序方式: 共有4203条查询结果,搜索用时 0 毫秒
971.
Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders.  相似文献   
972.
973.
Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes.  相似文献   
974.
Kleptoplastidy is the retention of plastids obtained from ingested algal prey, which may remain temporarily functional and be used for photosynthesis by the predator. We showed that the marine dinoflagellate Dinophysis mitra has great kleptoplastid diversity. We obtained 308 plastid rbcL sequences by gene cloning from 14 D. mitra cells and 102 operational taxonomic units (OTUs). Most sequences were new in the genetic database and positioned within Haptophyceae (227 sequences [73.7%], 80 OTUs [78.4%]), particularly within the genus Chrysochromulina. Others were closely related to Prasinophyceae (16 sequences [5.2%], 5 OTUs [4.9%]), Dictyochophyceae (14 sequences [4.5%], 5 OTUs [4.9%]), Pelagophyceae (14 sequences [4.5%], 1 OTU [1.0%]), Bolidophyceae (3 sequences [1.0%], 1 OTU [1.0%]), and Bacillariophyceae (1 sequence [0.3%], 1 OTU [1.0%]); however, 33 sequences (10.8%) as 9 OTUs (8.8%) were not closely clustered with any particular group. Only six sequences were identical to those of Chrysochromulina simplex, Chrysochromulina hirta, Chrysochromulina sp. TKB8936, Micromonas pusilla NEPCC29, Micromonas pusilla CCMP491, and an unidentified diatom. Thus, we detected >100 different plastid sequences from 14 D. mitra cells, strongly suggesting kleptoplastidy and the need for mixotrophic prey such as Laboea, Tontonia, and Strombidium-like ciliates, which retain numerous symbiotic plastids from different origins, for propagation and plastid sequestration.  相似文献   
975.
Two dipeptides, glycyl-L-leucine (G-L) and L-leucyl-glycine (L-G), the concentrations of which were 10 mmol/L, were degraded in subcritical water in order to understand fully the phenomena occurring during treatment. Treatment was administered in a stainless steel tubular reactor, which was connected to an HPLC pump and immersed in an oil bath at 200-240 °C, with residence times of 10-180 s. When G-L and L-G were treated, L-G and G-L significantly formed, respectively, and then they gradually decreased at every temperature. Irrespective of the kind of substrate, ring formation occurred, and cyclo-(glycyl-L-leucine) was one of the final products. The reaction rate constants related to degradation were estimated under the assumption that all the reactions obeyed first-order kinetics, and the simulated results corresponded well with the experimental ones in every case.  相似文献   
976.
977.
CsoSCA (formerly CsoS3) is a bacterial carbonic anhydrase localized in the shell of a cellular microcompartment called the carboxysome, where it converts HCO(3)(-) to CO(2) for use in carbon fixation by ribulose-bisphosphate carboxylase/oxygenase (RuBisCO). CsoSCA lacks significant sequence similarity to any of the four known classes of carbonic anhydrase (alpha, beta, gamma, or delta), and so it was initially classified as belonging to a new class, epsilon. The crystal structure of CsoSCA from Halothiobacillus neapolitanus reveals that it is actually a representative member of a new subclass of beta-carbonic anhydrases, distinguished by a lack of active site pairing. Whereas a typical beta-carbonic anhydrase maintains a pair of active sites organized within a two-fold symmetric homodimer or pair of fused, homologous domains, the two domains in CsoSCA have diverged to the point that only one domain in the pair retains a viable active site. We suggest that this defunct and somewhat diminished domain has evolved a new function, specific to its carboxysomal environment. Despite the level of sequence divergence that separates CsoSCA from the other two subclasses of beta-carbonic anhydrases, there is a remarkable level of structural similarity among active site regions, which suggests a common catalytic mechanism for the interconversion of HCO(3)(-) and CO(2). Crystal packing analysis suggests that CsoSCA exists within the carboxysome shell either as a homodimer or as extended filaments.  相似文献   
978.
Soybeans (Glycine max (L.) Merr.) and certain other legumes excrete isoflavones from their roots, which participate in plantmicrobe interactions such as symbiosis and as a defense against infections by pathogens. In G. max, the release of free isoflavones from their conjugates, the latent forms, is mediated by an isoflavone conjugate-hydrolyzing beta-glucosidase. Here we report on the purification and cDNA cloning of this important beta-glucosidase from the roots of G. max seedlings as well as related phylogenetic and cellular localization studies. The purified enzyme, isoflavone conjugate-hydrolyzing beta-glucosidase from roots of G. max seedling (GmICHG), is a homodimeric glycoprotein with a subunit molecular mass of 58 kDa and is capable of directly hydrolyzing genistein 7-O-(6 '-O-malonyl-beta-d-glucoside) to produce free genistein (k(cat), 98 s(-1); K(m), 25 microM at 30 degrees C, pH 7.0). GmICHG cDNA was isolated based on the amino acid sequence of the purified enzyme. GmICHG cDNA was abundantly expressed in the roots of G. max seedlings but only negligibly in the hypocotyl and cotyledon. An immunocytochemical analysis using anti-GmICHG antibodies, along with green fluorescent protein imaging analyses of Arabidopsis cultured cells transformed by the GmICHG:GFP fusion gene, revealed that the enzyme is exclusively localized in the cell wall and intercellular space of seedling roots, particularly in the cell wall of root hairs. A phylogenetic analysis revealed that GmICHG is a member of glycoside hydrolase family 1 and can be co-clustered with many other leguminous beta-glucosidases, the majority of which may also be involved in flavonoid-mediated interactions of legumes with microbes.  相似文献   
979.
Nomata J  Kitashima M  Inoue K  Fujita Y 《FEBS letters》2006,580(26):6151-6154
Dark-operative protochlorophyllide reductase (DPOR) in bacteriochlorophyll biosynthesis is a nitrogenase-like enzyme consisting of L-protein (BchL-dimer) as a reductase component and NB-protein (BchN-BchB-heterotetramer) as a catalytic component. Metallocenters of DPOR have not been identified. Here we report that L-protein has an oxygen-sensitive [4Fe-4S] cluster similar to nitrogenase Fe protein. Purified L-protein from Rhodobacter capsulatus showed absorption spectra and an electron paramagnetic resonance signal indicative of a [4Fe-4S] cluster. The activity quickly disappeared upon exposure to air with a half-life of 20s. These results suggest that the electron transfer mechanism is conserved in nitrogenase Fe protein and DPOR L-protein.  相似文献   
980.
Genome-wide linkage disequilibrium in two Japanese beef cattle breeds   总被引:4,自引:0,他引:4  
There is little knowledge about the degree of linkage disequilibrium (LD) in beef cattle. This study aims to perform a genome-wide search for LD in Japanese Black and Japanese Brown beef cattle and to compare the level of LD between these two breeds. Parameter D' (the LD coefficient) was used as a measure of LD, and LD was tested for significance of allelic associations between syntenic and between non-syntenic marker pairs. Effects of breed, chromosome, genetic map distance and their interactions with D' were tested based on least squares analyses. Both breeds showed high levels of LD, which ranged over several tens of cM and declined as the marker distance increased for syntenic marker pairs. A rapid decline of the D' value was observed between markers that were spaced 5 and 20 cM apart. LD was significant in most cases for marker pairs <40 cM apart but was not significant between non-syntenic loci. The pattern of LD found in these two breeds was similar to that previously published for dairy cattle. The D' value between breeds was not significantly different (P > 0.05), but the interaction between breed and chromosome was highly significant (P < 0.001). Genetic selection seems to have caused the heterogeneity of the D' values among chromosomes within breed. These results indicate that LD mapping is a useful tool for fine-mapping quantitative trait loci of economically important traits in Japanese beef cattle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号