首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3043篇
  免费   158篇
  国内免费   1篇
  2023年   12篇
  2022年   19篇
  2021年   54篇
  2020年   31篇
  2019年   35篇
  2018年   39篇
  2017年   31篇
  2016年   58篇
  2015年   100篇
  2014年   120篇
  2013年   182篇
  2012年   169篇
  2011年   197篇
  2010年   109篇
  2009年   120篇
  2008年   178篇
  2007年   172篇
  2006年   179篇
  2005年   180篇
  2004年   207篇
  2003年   183篇
  2002年   167篇
  2001年   53篇
  2000年   48篇
  1999年   51篇
  1998年   39篇
  1997年   33篇
  1996年   31篇
  1995年   23篇
  1994年   21篇
  1993年   24篇
  1992年   35篇
  1991年   36篇
  1990年   22篇
  1989年   29篇
  1988年   21篇
  1987年   20篇
  1986年   17篇
  1985年   20篇
  1984年   25篇
  1983年   15篇
  1982年   17篇
  1981年   11篇
  1979年   13篇
  1978年   7篇
  1976年   11篇
  1975年   4篇
  1973年   8篇
  1972年   4篇
  1968年   3篇
排序方式: 共有3202条查询结果,搜索用时 15 毫秒
141.
Increasing evidence implicates cyclin-dependent kinase 5 (Cdk5) in neuronal synaptic function. We searched for Cdk5 substrates in synaptosomal fractions prepared from mouse brains. Mass spectrometric analysis after two-dimensional SDS-PAGE identified several synaptic proteins phosphorylated by Cdk5-p35; one protein identified was Sept5 (CDCrel-1). Although septins were isolated originally as cell division-related proteins in yeast, Sept5 is expressed predominantly in neurons and is implicated in exocytosis. We confirmed that Sept5 is phosphorylated by Cdk5-p35 in vitro and identified Ser17 of adult type Sept5 (Sept5_v1) as a major phosphorylation site. We found that Ser17 of Sept5_v1 is phosphorylated in mouse brains. Coimmunoprecipitation from synaptosomal fractions and glutathione S-transferase-syntaxin-1A pulldown assays of Sept5_v1 expressed in COS-7 cells showed that phosphorylation of Sept5_v1 by Cdk5-p35 decreases the binding to syntaxin-1. These results indicate that the interaction of Sept5 with syntaxin-1 is regulated by the phosphorylation of Sept5_v1 at Ser17 by Cdk5-p35.  相似文献   
142.
The increase in the mass of adipose tissue during the development of obesity can arise through an increase in cell size, an increase in cell number, or both. Here we show that long term maintenance of C57BL/6 mice on a high fat diet (for approximately 25 weeks) induces an initial increase in adipocyte size followed by an increase in adipocyte number in white adipose tissue. The latter effect was found to be accompanied by up-regulation of expression of the gene for the F-box protein Skp2 as well as by downregulation of the cyclin-dependent kinase inhibitor p27(Kip1), a principal target of the SCF(Skp2) ubiquitin ligase, in white adipose tissue. Ablation of Skp2 protected mice from the development of obesity induced either by a high fat diet or by the lethal yellow agouti (A(y)) mutation, and this protective action was due to inhibition of the increase in adipocyte number without an effect on adipocyte hypertrophy. The reduction in the number of adipocyte caused by Skp2 ablation also inhibited the development of obesity-related insulin resistance in the A(y) mutant mice, although the reduced number of beta cells and reduced level of insulin secretion in Skp2-deficient mice resulted in glucose intolerance. Our observations thus indicate that Skp2 controls adipocyte proliferation during the development of obesity.  相似文献   
143.
144.
Colonization of the gastric pits in the stomach by Helicobacter pylori (Hp) is a major risk factor for gastritis, gastric ulcers, and cancer. Normally, rapid self-renewal of gut epithelia, which occurs by a balance of progenitor proliferation and pit cell apoptosis, serves as a host defense mechanism to limit bacterial colonization. To investigate how Hp overcomes this host defense, we use the Mongolian gerbil model of Hp infection. Apoptotic loss of pit cells induced by a proapoptotic agent is suppressed by Hp. The ability of Hp to suppress apoptosis contributed to pit hyperplasia and persistent bacterial colonization of the stomach. Infection with WT Hp but not with a mutant in the virulence effector cagA increased levels of the prosurvival factor phospho-ERK and antiapoptotic protein MCL1 in the gastric pits. Thus, CagA activates host cell survival and antiapoptotic pathways to overcome self-renewal of the gastric epithelium and help sustain Hp infection.  相似文献   
145.
Accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in DNA is associated with mutagenesis and cell death. Little attention has been given to the biological significance of 8-oxo-dG accumulation in cardiovascular tissues during the different stage of hypertension and its prevention. We thus investigated the levels and localization of both 8-oxo-dG accumulation and expression of MTH1, which hydrolyzes 8-oxo-dGTP to prevent its incorporation into DNA, in the thoracic aorta prepared from stroke-prone spontaneously hypertensive rats (SHRSP) and age-matched Wister-Kyoto rats (WKY), aged 5-32 weeks. HPLC-MS/MS analysis revealed that the levels of nuclear 8-oxo-dG in the aorta increased significantly in SHRSP, but not WKY, with aging. Immunohistochemical study revealed that both TUNEL reactivity and 8-oxo-dG immunoreactivity were increased in smooth muscle cells (SMC) and endothelial cells (EC) of the aorta with aging, and they exhibited similar distributions in serial sections. The number of 8-oxo-dG and TUNEL positive cells in EC, but not in SMC, was significantly higher in SHRSP than WKY at 32 weeks of age. In contrast, the expression levels of Mth1mRNA and MTH1 protein in the aorta were similarly decreased both in SHRSP and WKY with aging. However, the number of MTH1 expressing EC was remarkably increased in the older SHRSP compared to the younger ones or age-matched WKY. Hypertension significantly increased not only 8-oxo-dG accumulation but also the expression of MTH1 in EC of the aorta during aging. While accumulation of 8-oxo-dG in SMC of the aorta was slightly increased, the expression of MTH1 protein in SMC was rather decreased by hypertension. We thus suggest that MTH1 may protect EC in the aorta from the oxidative damage increased by hypertension.  相似文献   
146.
A high-throughput in planta overexpression screen of a Nicotiana benthamiana cDNA library identified a mitogen activated protein kinase kinase (MAPKK), NbMKK1, as a potent inducer of hypersensitive response (HR)-like cell death. NbMKK1-mediated cell death was attenuated in plants whereby expression of NbSIPK, an ortholog of tobacco SIPK and Arabidopsis AtMPK6, was knocked down by virus-induced gene silencing (VIGS), suggesting that NbMKK1 functions upstream of NbSIPK. In accordance with this result, NbMKK1 phosphorylated NbSIPK in vitro, and furthermore NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. VIGS of NbMKK1 in N. benthamiana resulted in a delay of Phytophthora infestans INF1 elicitin-mediated HR as well as in the reduction of resistance against a non-host pathogen Pseudomonas cichorii. Our data of NbMKK1, together with that of LeMKK4,1 demonstrate the presence of a novel defense signaling pathway involving NbMKK1/LeMKK4 and SIPK.Key Words: MAPK, defense, cell death, in planta screenMitogen activated protein kinase (MAPK) cascades are highly conserved signaling pathways in eukaryotes, comprising three tiered classes of protein kinase, MAPKKK (MAPKK kinase), MAPKK and MAPK, that sequentially relay phosphorylation signals.2 The Arabidopsis genome carries genes for 20 MAPKs, 10 MAPKKs3 and more than 25 MAPKKKs.4 In plants, MAPK signaling is known to function in various biotic4,5 and abiotic6 stress responses and cytokinesis.7 In defense signaling, extensive research has been carried out for two tobacco MAPKs, SIPK8 (salicylic-acid-induced protein kinase; hereafter designated as NtSIPK) and WIPK9 (wound-induced protein kinase = NtWIPK), and their orthologs in Arabidopsis10 (AtMPK6 and ATMPK3, respectively), partly because kinase activities of these two MAPKs are easy to detect by an in gel kinase assay using myeline basic protein (MBP) as substrate.11 Both NtSIPK and NtWIPK are activated by the interaction between host resistance (R)- gene and cognate avirulence gene of pathogen11,12 and elicitor perception by host cells.13,14 Shuqun Zhang and his group showed that an upstream kinase of both NtSIPK and NtWIPK is NtMEK2.15 Transient overexpression of constitutively active NtMEK2 caused phosphorylation of NtSIPK and NtWIPK, resulting in rapid HR-like cell death in tobacco leaves.15 Later, the same lab showed that overexpression of NtSIPK alone also caused HR-like cell death.16 The downstream target proteins of NtSIPK and AtMPK6 are being identified and include 1-aminocyclopropane-1-carboxylic acid sythase-6 (ACS-6).17,18 Although recent studies identified another MAPK cascade (NtMEK1 → Ntf6) involved in defense responses19,20 we can still say that the current research focus of MAPK defense signaling centers around the cascade comprising [NtMEK2→ NtSIPK/NtWIPK→ target proteins] of tobacco and its orthologous pathways in other plant species.In an effort to search for plant genes involved in HR-like cell death, we have been employing a high-throughput in planta expression screen of N. benthamiana cDNA libraries. In this experimental system, a cDNA library was made in a binary potato virus X (PVX)-based expression vector pSfinx.21 The cDNA library was transferred to Agrobacterium tumefaciens, and 40,000 of the bacterial colonies were individually inoculated by toothpicks onto leaf blades of N. benthamiana leaves. The phenotype around the inoculated site was observed 1–2 weeks following the inoculation. This rapid screen identified 30 cDNAs that caused cell death after overexpression, including genes coding for ubiquitin proteins, RNA recognition motif (RRM) containing proteins, a class II ethylene-responsive element binding factor (EREBP)-like protein22 and a MAPKK protein (this work). Such an in planta screening technique has been used before for the isolation of fungal21 and oomycete23,24 elicitors and necrosis inducing genes, but not for isolation of plant genes. Overexpression screening of cDNA libraries is a common practice in prokaryotes, yeast and amimal cells,25,26 so it is a surprise that this approach has not been systematically applied in plants. Given its throughput, we propose that this virus-based transient overexpression system is a highly efficient way to isolate novel plant genes by functional screen.27 Since overexpression frequently causes non-specific perturbation of signaling, genes identified by overexpression should be further validated by loss-of-function assays, for instance, VIGS.28Overexpression of the identified MAPKK gene, NbMKK1, triggered a rapid generation of H2O2, followed by HR-like cell death in N. benthamiana leaves (this work). NbMKK1-GFP fusion protein overexpression also caused cell death, and curiously NbMKK1-GFP was shown to localize consistently in the nucleus. Sequence comparison classified NbMKK1 to the Group D of MAPKKs about which little information is available. So far, a MAPKK, LeMKK4, from tomato belonging to the Group D MAPKKs, was shown to cause cell death after overexpression.1 Based on amino acid sequence similarity and phylogenetic analyses, LeMKK4 and NbMKK1 seem to be orthologs. To see whether NbMKK1 transduces signals through SIPK and WIPK, we performed NbMKK1 overexpression in N. benthamiana plants whereby the expression of either NbSIPK or NbWIPK (WIPK ortholog in N. benthamiana) was silenced by VIGS. NbMKK1 did not induce cell death in NbSIPK-silenced plants, suggesting that the NbMKK1 cell death signal is transmitted through NbSIPK. Indeed, NbMKK1 phosphorylated NbSIPK in vitro, and NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. These results suggest that NbMKK1 interacts with NbSIPK, most probably with its N-terminal docking domain, and phosphorylates NbSIPK in vivo to transduce the cell death signal downstream.NbMKK1 exhibits constitutive expression in leaves. To determine the function of NbMKK1 in defense, we silenced NbMKK1 by VIGS, and such plants were challenged with Phytophthora infestans INF1 elicitin29 and Pseudomonas cichorii, a non-host pathogen. INF1-mediated HR cell death was remarkably delayed in NbMKK1-silenced plants. Likewise, plant defense against P. cichorii was compromised in NbMKK1-silenced plants. These results indicate that NbMKK1 is an important component of signaling of INF1-mediated HR and non-host resistance to P. cichorii.Together, our analyses of NbMKK1 and independent work from Greg Martin''s lab on LeMKK41 suggest that a Group D MAPKK, NbMKK1/LeMKK4, functions upstream of SIPK and transduces defense signals in these solanaceous plants (Fig. 1). In plants as well as in other eukaryotes, it is common that kinases have multiple partners. The work on these kinases fits this concept. A single MAPK (e.g., SIPK) is phosphorylated by multiple MAPKKs (e.g., NtMEK2 and NbMKK1), and a single MAPKK (e.g., NtMEK2) can phosphorylate multiple MAPKs (e.g., NtSIPK and NtWIPK).Open in a separate windowFigure 1Defense signaling through NbMKK1/LeMKK4. Two defense signal pathways involving NtMEK2 (indicated as MEK2) → WIPK/SIPK and NtMEK1(indicated as MEK1) → Ntf6 are well documented. By our and Pedley and Martin''s1 works, another novel MAPKK, NbMKK1/LeMKK4 was demonstrated to participate in defense signaling by phosphorylation of SIPK.  相似文献   
147.
We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain.  相似文献   
148.
The eye lens is composed of fiber cells that differentiate from epithelial cells on its anterior surface. In concert with this differentiation, a set of proteins essential for lens function is synthesized, and the cellular organelles are degraded. DNase II-like acid DNase, also called DNase IIbeta, is specifically expressed in the lens, and degrades the DNA in the lens fiber cells. Here we report that DNase II-like acid DNase is synthesized as a precursor with a signal sequence, and is localized to lysosomes. DNase II-like acid DNase mRNA was found in cortical fiber cells but not epithelial cells, indicating that its expression is induced during the differentiation of epithelial cells into fiber cells. Immunohistochemical and immunocytochemical analyses indicated that DNase II-like acid DNase was colocalized with Lamp-1 in the lysosomes of fiber cells in a relatively narrow region bordering the organelle-free zone, and was often found in degenerating nuclei. A comparison by microarray analysis of the gene expression profiles between epithelial and cortical fiber cells of young mouse lens indicated that some genes for lysosomal enzymes (cathepsins and lipases) were strongly expressed in the fiber cells. These results suggest that the lysosomal system plays a role in the degradation of cellular organelles during lens cell differentiation.  相似文献   
149.
150.
Kano  Rui  Sakai  Mai  Hiyama  Masato  Tani  Kenji 《Mycopathologia》2019,184(2):335-339
Mycopathologia - Aspergillus caninus (synonym: Phialosimplex caninus) is an anamorphic fungus species associated with systemic infections in dogs that has been transferred from the genus...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号